Identification and resolution of DNA mixtures

DNA Mixture Interpretation Workshop | Dr Chris Maguire
Introduction

Mixture analysis models
 Pros & Cons

Recognizing a DNA Mixture
 Extra peaks
 Peak imbalance
 Biochemistry refresher

Resolving mixtures
 Number of contributors
 Mixing proportion
 Component pairing
 Use of quantitative data to eliminate or include contributors
Why consider DNA mixtures?

DNA Mixtures occur in casework ...

... Sexual assault/rape
 Mixed body fluids: semen/vaginal; semen/blood; semen/saliva etc

... Violent assault/Homicide
 Overlapping bloodstains
 Blood on saliva (shirt front) – contribution from wearer

... Property Crime
 Shared cigarettes

... Drug crime
 Shared needles
Mixture Interpretation – Approaches

Mixed DNA Profile

Frequentist Approaches
- Method 1: Exclusion Probability

Bayesian Approaches
- Qualitative Data
 - Method 2: Qualitative Approach

Quantitative and Qualitative Data
- Method 3: Binary Model
- Method 4: Continuous Model
Mixture Interpretation Methods

DNA Mixture interpretation methods are divided according to their use of qualitative and/or quantitative data contained within the DNA profile presented.

QUALITATIVE information
- which alleles are represented

QUANTITATIVE information
- the relative proportions of each allele represented
Mixture Interpretation – Methods

Method 1: Exclusion Probability
Method 2: Qualitative Approach
Method 3: Binary Model
Method 4: Continuous Model

Mixed DNA Profile

Quantitative and Qualitative Data

Frequentist Approaches

Bayesian Approaches

Qualitative Data
Exclusion Probability

Probability of Inclusion or Random Man Not Excluded (RMNE)

At any given locus \((l) \) the \(pI = (\text{sum of all allele proportions})^2 \)

\[
pI_l = \sum_{i=1}^{n} p(A_i)^2
\]

Assumes:
- Full representation of alleles
- Hardy-Weinberg equilibrium

Probability of Exclusion at a locus \((l) \) = 1 – \(pI_l \)
Exclusion Probability

Example:

Three alleles (a, b, c) at locus (l) each with frequency 0.2

\[pI_l = \sum_{i=1}^{n} p(A_i)^2 \]

\[pI_l = (0.2 + 0.2 + 0.2)^2 = (0.6)^2 = 0.36 \]

36% individuals will have allowable genotypes at this locus

(Equals sum of frequencies of aa, ab, ac, bb, bc and cc)
Exclusion Probability – Pros & Cons

Advantages

Simplicity
 - ease of computation
 - ease of explanation
 - no assumptions with regard to no. contributors

Generally Conservative?

Disadvantages

Requires full representation of alleles

Discards information contained in DNA profile

Depends on allele calls (effect of stutter)
The Bayesian Approach

Odds and Probability – are interchangeable

\[O(A) = \frac{\Pr(A)}{\Pr(A)} = \frac{\Pr(A)}{1 - \Pr(A)} \]

\[\Pr(A) = \frac{O(A)}{O(A) + 1} \]
The Bayesian Approach

Requires us to define the hypotheses under test

Hp = Prosecution hypothesis – usually easy to define

Hd = Defence (alternate) hypothesis - ????

Hp: the POI is the donor of the DNA
Hd: The POI is not the donor of the DNA
The Bayesian Approach

What the jury do in their deliberations is to evaluate the scientific evidence under the two hypotheses put before them:

\[
\frac{p(\text{Hp} | E) \times p(E | \text{Hp}) \times p(\text{Hp})}{p(\text{Hd} | E) \times p(E | \text{Hd}) \times p(\text{Hd})} = _ \times _
\]
The Bayesian Approach

What the jury do in their deliberations is to evaluate the scientific evidence under the two two hypotheses put before them:

\[
\frac{p(Hp|E)}{p(Hd|E)} = \frac{p(E|Hp)}{p(E|Hd)} \times \text{prior odds}
\]

Odds before the scientific evidence
The Bayesian Approach

What the jury do in their deliberations is to evaluate the scientific evidence under the two hypotheses put before them:

\[
p(E|Hp) = \text{Posterior odds} = \text{Odds after (modified by) the scientific evidence} \\
p(E|Hd) = \text{Odds before the scientific evidence}
\]

\[
\text{Posterior odds} = _______ \times \text{prior odds}
\]
The Bayesian Approach

What the jury do in their deliberations is to evaluate the scientific evidence under the two hypotheses put before them ...

\[p(E \mid Hp) \]

\[
\text{Posterior odds} = \frac{p(E \mid Hp)}{p(E \mid Hd)} \times \text{prior odds}
\]

Odds after (modified by) the scientific evidence

\[p(E \mid Hd) \]

Odds before the scientific evidence

Likelihood Ratio
An expression of the scientific evidence
The Bayesian Approach

So how do we put a LR into words

What’s the probability the semen on the vaginal swab came from our suspect?

Don’t forget we’re considering the probability of the evidence (E ie the DNA profile) given two alternate hypotheses so our words have to reflect this:

The probability of the evidence GIVEN
The Bayesian Approach

<table>
<thead>
<tr>
<th>LR</th>
<th>Verbal wording</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000001</td>
<td>Support for H_d</td>
</tr>
<tr>
<td>0.00001</td>
<td></td>
</tr>
<tr>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Inconclusive</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>1,000,000+</td>
<td>Support for H_p</td>
</tr>
</tbody>
</table>

DNA Mixture Interpretation

Presentation Title
The Bayesian Approach

Requires us to define the hypotheses under test:

Vaginal swab + semen both sides agree V is represented

$Hp = \text{Prosecution hypothesis} = pE \mid V + \text{Suspect (POI)}$

$H_{d1} = \text{Defence hypothesis} = pE \mid V + \text{Unknown}$

$H_{d2} = \text{Alt defence hypothesis} = pE \mid V + \text{Suspect’s brother}$
The Bayesian Approach

Requires us to define the hypotheses under test:

Victim alleges consensual intercourse with boyfriend and then raped. 3 person mixture from Vaginal swab + semen.

\[H_p = \text{Prosecution hypothesis } = pE \mid V + \text{Boyfriend} + \text{Suspect} \]

\[H_{d1} = \text{Defence hypothesis } = pE \mid V + \text{Boyfriend} + \text{Unknown} \]

\[H_{d2} = \text{Alt defence hypothesis } = pE \mid V + \text{Uk1} + \text{Uk2} \]
Binary Model (described by Clayton et al 1998, FSI 91 55-70)

Utilizes qualitative and quantitative data in DNA profile

- Requires detailed knowledge of performance of STR chemistry
- Detailed forensic validation & casework performance data

Method

- Assess profile
- Determine number of contributors
- List all possible genotype combinations at locus
- Generate a set of ‘retained’ genotypes
- If the genotype of suspected contributor is not in retained list he must be considered as EXCLUDED

General principles apply to any STR chemistry
Binary Model - Assumptions

1. Peak heights (or areas) are proportional to amount DNA present

2. Mixture Proportion (or Ratio) is roughly constant across loci

3. If contributors share alleles their peak heights (areas) are cumulative (also known as DOSING)

As above this:

Requires detailed knowledge of performance of STR chemistry, which comes from

Detailed forensic validation & casework performance data
Binary Model – Method (The three R’s)

1. Recognition (Appraisal)
 a) Designation of alleles
 b) Identification of a mixture
 c) Assessment of profile quality

2. Resolution (Deconvolution)
 a) List all possible genotypes
 b) Generate retained list of genotypes
 c) Is genotype of suspected contributor amongst retained list?

3. Reporting
 a) Formulate hypotheses
 b) Evaluate strength of evidence
 c) Reporting standards
Step 1 - Recognition

Identifying a mixed DNA profile

1. The presence of additional bands
 a) Does this always indicate a mixture
 b) Is it possible to have just one or two alleles at every locus?
 c) Is it likely?
 d) What else might cause additional bands

2. The presence of a pronounced heterozygous imbalance
 a) Is this always indicative of a mixed DNA profile?
 b) What else might cause heterozygous peak imbalance?
Biochemistry refresher

Potential causes of additional bands

1. Stutters and N/N+1 bands
Biochemistry refresher

Potential causes of additional bands

2. Pull-up
Biochemistry refresher

Potential causes of additional bands

3. Chromosomal abnormalities (allelic mutations)
 a) Chromosomal duplications
 b) Trisomies (Aneuploidies)
 c) Somatic mutations or mosaicism

Single locus and Rare (also seen in Reference sample)

Peak heights 1:1:1 and may serve to strengthen match

XY aneuploidies may be more common (XXY or XYY)
Biochemistry refresher

Chromosomal rearrangements

Original chromosomes

Translocation

Trisomy

Duplication
Biochemistry refresher

D21 Trisomy

Kleinfelters (XXY)
Biochemistry refresher

Somatic Mutations (or mocaism)

Samples often show three allele patterns:

- 11,13
- 11,14
- 11,14

The graph shows the peak patterns for different samples:

- 19 Yellow UP99.8028.55
- 37 Yellow UP99.8028.61
Step 1 - Recognition

Identifying a mixed DNA profile

2. The presence of a pronounced heterozygous imbalance

 a) Unequal amplification efficiency - Processivity of Taq polymerase
 b) Degraded template DNA
 c) Stochastic variation
 d) Primer binding site mutations
Biochemistry refresher

Potential causes of heterozygote peak imbalance

2. Degradation of template DNA

![Graph showing Ski slope effect and Pref-amp at D2]
Biochemistry refresher

Potential causes of heterozygote peak imbalance

3. Stochastic variation – Lt DNA effect

 a) Unequal numbers of template molecules due to sampling variation

 b) PCR process preserves asymmetry
Biochemistry refresher

Potential causes of heterozygote peak imbalance

4. Primer binding site mutations

![Image of DNA peak analysis graph showing various alleles and primer binding sites.](image-url)
Step 1 – Recognition: Recap

Identifying a mixed DNA profile

1. Is it a mixture – extra bands and/or peak imbalance

2. Assessment of the DNA profile – Quality appraisal
 a) Amplification efficiency – peak height (rfu)
 b) Degraded?
 c) Is it a low level mixture – does it matter?

3. Do the case circumstances allow conditioning?
Step 1 – Recognition: Classification

Classification of mixed DNA profiles

1. **GREEN** – allelic peaks around or above 400 rfu

2. **AMBER** – peak height between 150 and 400 rfu. Lab guidelines become progressively less robust

3. **RED** – peak heights below 150 rfu - potential for incomplete representation, drop-out, drop-in high stutters, exaggerated peak imbalance
Step 2– Resolution

NOTE Unless conditioning on known profile this step is conducted without knowledge of DNA profiles of any reference samples
Step 2– Resolution

Conditioning depends on circumstances

Two contributors

Scenario 1 – Vaginal Swab + semen; donor 8, 10
What’s the genotype of the male contributor?

Scenario 2 – i/s front male underpants; donor 8, 10
What’s the genotype of the second contributor?

Scenario 3 – mixed body fluid stain from a carpet
Can we condition on anything?
Step 2– Resolution

Logical progression for the analysis

1. Assess the MINIMUM number of contributors (no. bands)

2. Estimate the mixing proportion (or ratio) – M_X

3. Using observed alleles list all pairwise combinations

4. Use peak height/area data and M_X to ELIMINATE genotypes not supported by the data

5. Compare with reference samples
Step 2– Resolution

Logical progression for the analysis

1. Assess the MINIMUM number of contributors
2. Estimate the mixing proportion (or ratio) – M_X
3. Using observed alleles list all pairwise combinations
4. Use peak height/area data and M_X to ELIMINATE genotypes not supported by the data
5. Compare with reference samples
Step 2– Resolution

Logical progression for the analysis

<table>
<thead>
<tr>
<th>Major Contributor</th>
<th>Minor Contributor</th>
</tr>
</thead>
<tbody>
<tr>
<td>14, 18</td>
<td>16, 17</td>
</tr>
</tbody>
</table>

5. Compare with reference samples
Step 2– Resolution

Logical progression for the analysis

1. **Assess the MINIMUM number of contributors (no. bands)**
 a) If there are two contributors what is the maximum no. bands?
 b) If you see five or six bands at a locus what does this imply?

2. **Mixing Proportions (M_X) or Mixing Ratio (M_R)**
Step 2– Resolution

How many contributors?

Three persons or more?

Is the peak in the 19 position a stutter or an allele?

Is this a major 20, 20 with other low level contributors?

Could this be a 5 person mixture?

(12, 20 + 13, 20 + 14, 20 + 17, 20 + 19, 20)
Step 2– Resolution

There are three fundamental observations:

1. Within a locus the proportion peak height/area reflects the amount of template DNA from each contributor

2. If bands are shared between contributors the peak height/areas are cumulative (approx) – DOSING

3. In a well amplified (GREEN) mixed DNA profile the mixing proportion (M_X) is fairly constant
Step 2– Resolution

<table>
<thead>
<tr>
<th>Mixing Ratio (MR)</th>
<th>Contributor 1 (MX)</th>
<th>Contributor 2 (MX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 2– Resolution

The Amelogenin locus may indicate a MALE/FEMALE mixture

<table>
<thead>
<tr>
<th>Ratio of Components</th>
<th>Dosage of observed products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (X,Y)</td>
<td>Female (X,X)</td>
</tr>
<tr>
<td></td>
<td>X allele</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>
Step 3 – List all genotype combinations

Take the observed allele designations and list out all pair-wise combinations.

1. Try A,B,C,D 6 pair-wise combinations
2. Try A,B,C 12 pair-wise combinations
3. Try A,B 7 pair-wise combinations

See: Component Pairing exercise sheets
Step 4 – Generate retained genotype list

We only want to retain those genotype combinations which are supported by the observed data.

At each locus:

1. Assess every genotype combination against:
 a) Consistency with the observed Mixing Proportion (M_X)
 b) Observed Heterozygote peak imbalance

2. Mark every genotype combination as Pass or Fail

3. Generate retained genotype list
Step 4 – Generate retained genotype list

Try These

1. Four alleles at a locus A, B, C, D
2. Three alleles at a locus A, B, C
3. Two alleles at a locus A, B
4. One allele at a locus A, A
Step 4 – Generate retained genotype list

1. Four alleles at a locus A, B, C, D

<table>
<thead>
<tr>
<th>Contributor 1</th>
<th>Contributor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 4 – Generate retained genotype list

2. Three alleles at a locus A, B, C

<table>
<thead>
<tr>
<th>Contributor 1</th>
<th>Contributor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, A</td>
<td>B, C</td>
</tr>
<tr>
<td>A, B</td>
<td>A, C</td>
</tr>
<tr>
<td>A, B</td>
<td>B, C</td>
</tr>
<tr>
<td>A, B</td>
<td>C, C</td>
</tr>
<tr>
<td>A, C</td>
<td>B, B</td>
</tr>
<tr>
<td>A, C</td>
<td>B, C</td>
</tr>
<tr>
<td>A, C</td>
<td>A, B</td>
</tr>
<tr>
<td>B, C</td>
<td>A, B</td>
</tr>
<tr>
<td>B, C</td>
<td>A, C</td>
</tr>
<tr>
<td>B, C</td>
<td>A, A</td>
</tr>
<tr>
<td>B, B</td>
<td>A, C</td>
</tr>
<tr>
<td>C, C</td>
<td>A, B</td>
</tr>
</tbody>
</table>
Step 4 – Generate retained genotype list

3. Two alleles at a locus A, B

<table>
<thead>
<tr>
<th>Contributor 1</th>
<th>Contributor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, A</td>
<td>B, B</td>
</tr>
<tr>
<td>A, A</td>
<td>A, B</td>
</tr>
<tr>
<td>A, B</td>
<td>A, A</td>
</tr>
<tr>
<td>A, B</td>
<td>B, B</td>
</tr>
<tr>
<td>A, B</td>
<td>A, B</td>
</tr>
<tr>
<td>B, B</td>
<td>A, B</td>
</tr>
<tr>
<td>B, B</td>
<td>A, A</td>
</tr>
</tbody>
</table>
Step 4 – Generate retained genotype list

4. One alleles at a locus

<table>
<thead>
<tr>
<th>Contributor 1</th>
<th>Contributor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, A</td>
<td>A, A</td>
</tr>
</tbody>
</table>
Step 4 – Generate retained genotype list

Software support?

<table>
<thead>
<tr>
<th>Pref Amp Tolerance</th>
<th>Mixing Proportion Tolerance</th>
<th>Homozygote</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>15%</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight: Maximum</th>
<th>Weight: Minimum</th>
<th>Weight: Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>18% 5:1</td>
<td>14% 6:1</td>
<td>16% 5:1</td>
</tr>
</tbody>
</table>

Database Consolidation is on

<table>
<thead>
<tr>
<th>Locus</th>
<th>Allele</th>
<th>Area</th>
<th>Possible Contributors</th>
<th>Pref Amp Rule</th>
<th>Mix Prop Rule</th>
<th>Mix Est</th>
<th>RC</th>
<th>Contributor 1</th>
<th>Contributor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3S1358</td>
<td>15</td>
<td>5367</td>
<td>16 16 15 15</td>
<td>- Y -</td>
<td>Y 18% 5:1</td>
<td>Y</td>
<td>Include 16 16 15 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 24242</td>
<td>15 16 15 15</td>
<td>22% N 100% Y</td>
<td>-64% >10:1 N</td>
<td>N -</td>
<td>Y</td>
<td>- - - - - - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>15 16 15 15</td>
<td>22% N 22% N</td>
<td>- Y N</td>
<td>N -</td>
<td>Y</td>
<td>- - - - - - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>15 16 15 16</td>
<td>100% Y 452% Y</td>
<td>36% 2:1 N</td>
<td>N -</td>
<td>Y</td>
<td>- - - - - - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>15 15 16 16</td>
<td>- Y -</td>
<td>82% 1:5 N</td>
<td>N -</td>
<td>Y</td>
<td>- - - - - - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>15 15 15 16</td>
<td>100% Y 22% N</td>
<td>164% <1:10 N</td>
<td>N -</td>
<td>Y</td>
<td>- - - - - - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>15 16 16 16</td>
<td>452% Y 100% Y</td>
<td>64% 1:2 N</td>
<td>N -</td>
<td>Y</td>
<td>- - - - - - - -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Database Consolidation for D3S1358 16 16 15 15

http://www.promega.com/profiles/802/ProfilesinDNA_802_08.pdf
You have defined your retained genotype list – you **cannot** change your mind when the reference samples are revealed

1. If the suspect’s DNA profile **does not** match one of the retained genotypes he is **EXCLUDED** as a contributor

2. If suspect’s DNA profile does match one of the retained genotypes this should be confirmed at all loci

3. This process should be repeated by second scientist as a blind exercise to ensure objectivity

4. This type of analysis is built into some DNA Expert systems (FSS-i³)
Summary

Outline models – particularly RMNE and binary methods

Recognizing DNA mixtures – extra bands, Het peak imbalance

Biochemistry refresher – other things cause artifacts

Resolving mixtures – series of logical steps

NB. Must be objective – so no sneaky peaks at suspect profile
Contact Information

Dr Chris Maguire

Northumbria University Centre for Forensic Science
Ellison Building Rm. D104
Northumberland Road
Newcastle upon Tyne
NE1 8ST

+44 191 243 7627
chris.maguire@northumbria.ac.uk