Communicating Color

Courtesy of:
X-Rite Inc
430044 Street SE
Grand Rapids MI
(616) 803-2000

What is Color?

Munsell color

Color Perception

Munsell Color

Generation of the Spectrum

White Light

Electromagnetic Spectrum

Primary Colors "Additive Mixtures"

The additive mixture of Red, Green and Blue light help to build the final color you see. (Example: TV, Scanner, etc)

Red, Green and Blue are Additive Primary Colors

Primary Colors "Subtractive Mixtures"

These build colors by subtracting or filtering from a white source of light with Blue (Yellow), Green (Magenta), and Red (Cyan) filters.

Color filters transmit only the light from the own color and reflect or absorb all other colors

Cyan, Magenta and Yellow

Opaque (non-metallic) Object

Iunsell Color

Common Light Sources

Daylight D65

Cool White Fluorescent

TL 84 Fluorescent

Illuminant A (Incandescent)

Light Source - Variation

Standard Illuminants

Illuminant	Description	Color Temperature
A	Incandescent	2856 K
B	Noon Daylight	4874 K
C	Average Daylight	6774 K
D65	Average North Sky Daylight	6520 K
D50	Graphic Arts viewing std	5150 K
F2	Cool White Fluorescent	4150 K
TL84	Narrow Band Fluorescent	4100 K

Observer - Variation

- Visual Evaluation
- Observers Color Vision
- Observers Experience
- Instrumental Evaluation
- Type of Instrument
- Which illuminant and observer function used

Facts About Color Vision

- 1 in every 12 males are color deficient.
- 1 in every 250 females are color deficient.
- The most common color deficiency is a partial green deficiency.
- Being color blind is rare; only 1 in 40,000. You would be missing all three receptors and called an "Achromat".

Things that effect our color vision

- Tiredness: time of day color is viewed.
- Age: causes discoloration of lens and cornea
- Stress: Hypertension (high blood pressure)
- Hunger: Color assessment is effected by hunger
- Medication: Viagra and Digitalis both effect blue color vision.
- Disease: Diabetes, Retina Pigmentosis and Cataracts effect color vision.
- UV: exposure to ultraviolet, can cause retina damage and yellowing of lens and cornea.

Correct Viewing Geometry $45{ }^{\circ}$ ANGLE

maintaining proper
viewing geometry

Viewing Geometry

Munsel| color

Metamerism

Daylight

Fluorescent

samples do not match under fluorescent

Gonioappearance (Geometric Metamerism)

- Samples that match at one angle of illumination, but do not match when the angle of illumination or viewing angle is changed.
- Often occurs with materials such as pile fabrics, satins, velvets, suedes, broadlooms, textured extruded plastics or Special Effect Paints (metallic, Pearlescent)

Gonioappearance

॥viun |دc.| Color
©x.rite

Observer Metamerism

- When samples appear to match to a group of observers, but do not match to an individual observer.
- This individual could have slightly inferior color vision.
- Color Vision and Discrimination (Munsell / Farnsworth) tests provide some insight into the differences between observers and the areas of color that presents difficulty for the observer to discriminate.

Simultaneous Contrast

Chameleon Effect

Munsell Color

©x.rite

Light Source Selection

- Use established industry procedures or standards that specify specific light sources and viewing practices, (ASTM, AATCC).
- Choose light sources that do not hinder your ability to make good color decisions.
- Specify color temperature, SPD, CRI, CIE Assessment and lamp technology.
- Everyone must agree to use the same light sources and procedures.

Proper Technique

- Select the correct light source(s).
- Viewing booth should be kept clear of extra samples.
- Samples should be placed inside the light booth.
- Orient Standard and Sample in same direction, side by side, touching. Same size samples are best.
- Align standard and sample at 45° degree angle as standard viewing geometry.
- Limit the amount of ambient light flooding the viewing booth.
- Evaluator is should not be wearing brightly colored clothing.
- No tinted glasses.

Describe this Color.

Red

Red-Purple
Blue-Red
Cool Red
Roman Red
Wine Red

Munsell color
©x.rite

Two things that are definite when talking about color:

1) Rarely does anyone agree on color
2) Everyone can tell you when the color is wrong

Color Anarchy?

Color Order/Description System:

- Allows for the specification of a color as it relates to its place in color space.
- Allows for easy understanding of what the color is.
- Provides a controlled method for specifying colors.

They are several types of systems or languages

- Munsell
- Lab
- Lch
- XYZ

Essentially the perform the same task

Color systems or languages

- Provide means for communicating color effectively
- Similar to a map a providing an effective way to find a location

Munsell Color Order System

A system which shows the relationship among colors using three attributes:

- hue,
- value
- chroma

Hue

Hue is the color attribute by which we distinguish red from green, blue from yellow, and so forth.

Value

Value indicates the lightness or darkenss of a color:

0 = pure black
10 = pure white

Chroma

Weak

Chroma is the degree of departure of color from the neutral color of the same value.

- Low chroma colors are called weak.
- High chroma colors are called strong.

How can a color standard be quantified and communicated?

- By defining ways to describe a color
- By defining the Illuminate to use
- By defining the Observer Conditions
- By using a controlled Color Standard

Color Measurement and Specification

- Communicating and achieving accurate color is a process which begins with measuring. Knowing the who, what, where and why we measure is critical to your success.

Sources of Visual Assessment Difference Human Observer

- Acuity, color discrimination
- Use FM Test to assess observers' strengths and limitations
- Age, meds, mood, fatigue, etc
- Colored glasses or contacts?
- Colored apparel?
- Best Practice: wear white or gray lab coat

Keys to a Successful Color Program

- Use consistent, standard Best Practices
- Identify assessments which are "borderline"
- Pass/fail judgment depends on business issues, in addition to color
- Rigorous visual program will correlate well with instrumental program
- Control the use of color standards

Best Practice for Physical Color Standards

- Control your standards - do not let them travel!
- Create or select color constant standards whenever possible.
- Do not cut them into successively smaller pieces.
- Use consistent, controlled procedures for any critical viewing of color or color match.
- There will be changes over time and between different pieces.

Standards - Metamerism vs. Flare (Hinks)

Fhink Color Quiz

 Which swatches are printed with the same ink?

©x.rite

Munsell color
©x.rite

Why Do We Need Instruments?

- Communication of Color
- Limitations of the Human Eye

Limitations of the Human Eye

- Visual Phenomena

Munsell Color

©x.rite

Limitations of the Human Eye

- Visual Phenomena
- Fatigue

Different Grays?

No, Same Gray!

Munsel| color
Ex.rite

- Visual Phenomena
- Fatigue
- Surround Color

Limitations of the Human Eye

- Visual Phenomena
- Fatigue
- Surround Color
- No Memory

Limitations of the Human Eye

- Visual Phenomena
- Fatigue
- Surround Color
- No Memory
- Color Deficiency
- Recordabilty
- Age
- Viewing Conditions

What's Wiong with

 This Picture?

Munsell color

Instrumentally Quantifying Objects

- Spectral characteristics are specified by reflectance (or transmittance) as a function of wavelength
- Spectral data are measured with a spectrophotometer

Red Object

Munsell Color

Spectral Reflectance Curves

white fluorescent

Standard Observer Responses

Munsell color

$2^{\circ} \& 10^{\circ}$ Standard Observer

|Munsell Color

Tristimulus Values - X, Y \& Z

tristimulus values
 $X=$?
 $Y=$?
 Z=?

What Color Is This?

10° Observer, Illuminant D65

$$
\begin{aligned}
& X=18.34 \\
& Y=11.19 \\
& Z=6.68
\end{aligned}
$$

CIELab Values
 for a Red Object

- 10° Observer, Illuminant D65
- L*=39.90
- $a^{*}=48.04$
- $b^{*}=17.18$

CIELab Values for a Red Object D65 vs F2

- $L^{*}=39.90 \quad L^{*}=39.95$
- $a^{*}=48.04 \quad a^{*}=37.77$
- $b^{*}=17.18 \quad b^{*}=16.94$

Munsel| Color

CIELab

CIELab

Example	L^{*}	a^{*}	$\mathrm{~b}^{*}$
Pale Gray (nearl y white)	83.70	-0.50	0.50
Medium Gray	59.60	0.00	0.50
Bril liant Red	43.70	37.10	18.70
Bril liant Y ellow	83.30	1.90	77.00
Green	56.80	-30.00	15.40
Deep Bl ue	29.30	8.00	-17.90

CIELCh

|Munsell Color

CIELch

Example	L^{*}	\mathbf{C}^{*}	$\mathrm{~h}^{*}$
Pale Gray (near ly white)	83.70	0.71	315.0°
Medium Gray	59.60	0.50	270.0°
Bril liant Red	43.70	41.55	26.8°
Bril liant Y ell ow	83.30	77.02	88.6°
Green	56.80	33.72	152.7°
Deep Blue	29.30	19.61	294.1°

In Conclusion

