Communicating Color

Courtesy of: X-Rite Inc 4300 44 Street SE Grand Rapids MI (616) 803-2000

What is Color?

Color Perception

What influences the perception of color?

- 1. light source
- 2. object being viewed
- 3. observer (person)

x x rite

Electromagnetic Spectrum

Primary Colors "Additive Mixtures"

The additive mixture of **Red**, **Green** and **Blue** light help to build the final color you see. (Example: TV, Scanner, etc)

Red, Green and Blue are Additive Primary Colors

Primary Colors "Subtractive Mixtures"

These build colors by subtracting or filtering from a white source of light with **Blue (Yellow)**, **Green** (Magenta), and **Red (Cyan)** filters.

Color filters transmit only the light from the own color and reflect or absorb all other colors

Cyan, Magenta and Yellow are Subtractive Primary Colors

Common Light Sources

Daylight D65

Cool White Fluorescent

TL 84 Fluorescent

Light Source - Variation

Light source SPD Curves

Wavelength (nm)

700

0

400

Standard Illuminants

Description	Color Temperature
Incandescent	2856K
Noon Daylight	4874K
Average Daylight	6774K
Average North Sky Daylig	nt 6520K
Graphic Arts viewing std	5150K
Cool White Fluorescent	4150K
Narrow Band Fluorescent	4100K
	DescriptionIncandescentNoon DaylightAverage DaylightAverage North Sky DaylightGraphic Arts viewing stdCool White FluorescentNarrow Band Fluorescent

Munsell Color

Observer - Variation

- Visual Evaluation
 - Observers Color Vision
 - Observers Experience
- Instrumental Evaluation
 - Type of Instrument
 - Which illuminant and observer function used

Facts About Color Vision

- 1 in every 12 males are color deficient.
- 1 in every 250 females are color deficient.
- The most common color deficiency is a partial green deficiency.
- Being color blind is rare; only 1 in 40,000. You would be missing all three receptors and called an "Achromat".

Things that effect our color vision

- Tiredness: time of day color is viewed.
- Age: causes discoloration of lens and cornea
- Stress: Hypertension (high blood pressure)
- Hunger: Color assessment is effected by hunger
- Medication: Viagra and Digitalis both effect blue color vision.
- Disease: Diabetes, Retina Pigmentosis and Cataracts effect color vision.
- UV: exposure to ultraviolet, can cause retina damage and yellowing of lens and cornea.

Viewing Geometry

x•rite №

Metamerism

Gonioappearance (Geometric Metamerism)

- Samples that match at one angle of illumination, but do not match when the angle of illumination or viewing angle is changed.
- Often occurs with materials such as pile fabrics, satins, velvets, suedes, broadlooms, textured extruded plastics or Special Effect Paints (metallic, Pearlescent)

Gonioappearance

Observer Metamerism

- When samples appear to match to a group of observers, but do not match to an individual observer.
- This individual could have slightly inferior color vision.
- Color Vision and Discrimination (Munsell / Farnsworth) tests provide some insight into the differences between observers and the areas of color that presents difficulty for the observer to discriminate.

Simultaneous Contrast

x-rite

Chameleon Effect

x∗rite

Light Source Selection

- Use established industry procedures or standards that specify specific light sources and viewing practices, (ASTM, AATCC).
- Choose light sources that do not hinder your ability to make good color decisions.
- Specify color temperature, SPD, CRI, CIE Assessment and lamp technology.
- Everyone must agree to use the same light sources and procedures.

Proper Technique

- Select the correct light source(s).
- Viewing booth should be kept clear of extra samples.
- Samples should be placed inside the light booth.
- Orient Standard and Sample in same direction, side by side, touching. Same size samples are best.
- Align standard and sample at 45° degree angle as standard viewing geometry.
- Limit the amount of ambient light flooding the viewing booth.
- Evaluator is should not be wearing brightly colored clothing.
- No tinted glasses.

Describe this Color.

Red Red-Purple Blue-Red Cool Red Roman Red

Two things that are definite when talking about color:

- 1) Rarely does anyone agree on color
- 2) Everyone can tell you when the color is wrong

Color Anarchy?

Color Order/Description System:

- Allows for the specification of a color as it relates to its place in color space.
- Allows for easy understanding of what the color is.
- Provides a controlled method for specifying colors.

They are several types of systems or languages

- Munsell
- Lab
- Lch
- XYZ

Essentially the perform the same task

Color systems or languages

- Provide means for communicating color effectively
- Similar to a map a providing an effective way to find a location

Munsell Color Order System

A system which shows the relationship among colors using three attributes:

- hue,
- value
- chroma

Hue

Hue is the color attribute by which we distinguish red from green, blue from yellow, and so forth.

x x rite

Value

Value indicates the lightness or darkenss of a color:

0 = pure black10 = pure white

Chroma

Chroma is the degree of departure of color from the neutral color of the same value.

- Low chroma colors are called weak.
- High chroma colors are called strong.

How can a color standard be quantified and communicated?

- By defining ways to describe a color
- By defining the Illuminate to use
- By defining the Observer Conditions
- By using a controlled Color Standard

🔊 x•rite

Color Measurement and Specification

 Communicating and achieving accurate color is a process which begins with measuring. Knowing the who, what, where and why we measure is critical to your success.

Sources of Visual Assessment Difference Human Observer

- Acuity, color discrimination
 - Use FM Test to assess observers' strengths and limitations
- Age, meds, mood, fatigue, etc
- Colored glasses or contacts?
- Colored apparel?
 - Best Practice: wear white or gray lab coat

Keys to a Successful Color Program

- Use consistent, standard Best Practices
- Identify assessments which are "borderline"
 - Pass/fail judgment depends on business issues, in addition to color
- Rigorous visual program will correlate well with instrumental program
- Control the use of color standards

Best Practice for Physical Color Standards

- Control your standards do not let them travel!
- Create or select color constant standards whenever possible.
- Do not cut them into successively smaller pieces.
- Use consistent, controlled procedures for any critical viewing of color or color match.
- There will be changes over time and between different pieces.

Standards – Metamerism vs. Flare (Hinks)

x-rite

All Of Them!

RECYCLED NEWS RECYCLED FIBER BOND COATED GLOSS #1
RECYCLED NEWS RECYCLED FIBER BOND COATED GLOSS #1
RECYCLED FIBER BOND COATED GLOSS #1
BOND COATED GLOSS #1
COATED GLOSS #1
COATED GLOSS #4
GROUNDWOOD COATED PUB #5
DULL COAT #1
SUPER CALENDERED
RECYCLED UNCOATED
MATTE COATED #3
UNCOATED #3
CAST COATED
NATURAL KRAFT.
NATURAL KRAFT
BLEACHED KRAFT

Why Do We Need Instruments?

- Communication of Color
- Limitations of the Human Eye

Limitations of the Human Eye

Visual Phenomena

∦x•rite

Limitations of the Human Eye

- Visual Phenomena
- Fatigue

Different Grays?

No, Same Gray!

- Visual Phenomena
- Fatigue
- Surround Color

Limitations of the Human Eye

- Visual Phenomena
- Fatigue
- Surround Color
- No Memory

Limitations of the Human Eye

- Visual Phenomena
- Fatigue
- Surround Color
- No Memory
- Color Deficiency
- Recordability
- Age
- Viewing Conditions

▶ × x•rite

What's Wrong with This Picture?

x x rite

Instrumentally Quantifying Objects

- Spectral characteristics are specified by reflectance (or transmittance) as a function of wavelength
- Spectral data are measured with a spectrophotometer

Red Object

Munsell Color

x-rite

Spectral Reflectance Curves

white fluorescent

∑x•rite

Standard Observer Responses

x-rite

Tristimulus Values – X, Y & Z

Munsell Color

What Color Is This?

10° Observer, Illuminant D65

$$X = 18.34$$

 $Y = 11.19$
 $Z = 6.68$

CIELab Values for a Red Object

- 10° Observer, Illuminant D65
- L*=39.90
- a*=48.04
- b*=17.18

CIELab Values for a Red Object D65 vs F2

- L* = 39.90 L* = 39.95
- a* = 48.04 a* = 37.77
- b* = 17.18 b* = 16.94

⊠x•rite

CIELab

Example	L*	a*	b*	
Pale Gray (nearl y white)	83.70	-0.50	0.50	-
Medium Gray	59.60	0.00	0.50	
Bril liant Red	43.70	37.10	18.70	
Bril liant Y ell ow	83.30	1.90	77.00	
Green	56.80	-30.00	15.40	
Deep BI ue	29.30	8.00	-17.90	

CIELCh

CIELch

Example	L*	C *	h*	
Pale Gray (near ly white)	83.70	0.71	315.0°	
Medium Gray	59.60	0.50	270.0°	
Bril liant Red	43.70	41.55	26.8°	
Bril liant Y ell ow	83.30	77.02	88.6°	
Green	56.80	33.72	152.7°	
Deep Blue	29.30	19.61	294.1°	

In Conclusion

x∗rite