GENERAL ATOMIC SPECTROSCOPY

ENERGY LEVELS, ABSORPTION, EMISSION, ATOMIZATION

ATOMIC ABSORPTION: FLAME, FURNACE, HYDRIDE, COLD VAPOR

BOOKS

ICPs in Analytical Atomic Spectrometry Montaser, Ed., VCH, 1992.

Handbook of ICP-AES, Thompson & Walsh Viridian Publishing, reprinted 2003.

Winge, Fassel et al. ICP-AES: An Atlas of Spectral Information, Elsevier, 1985.

Ingle & Crouch, Spectrochemical Analysis, Prentice Hall, 1988

Also NBS, MIT Wavelength Tables

ATOMIC SPECTROSCOPY

ATOMIC LEVELS NO VIB - ROT SUBLEVELS SHARP LINES <u>HIGH SELECTIVITY(+)</u> ONLY DETERMINE ELEMENT NOT COMPOUND (-)

PRODUCE FREE ATOMS FROM SAMPLE ? EXCITE EMISSION (AE)

WITH ADDITIONAL SOURCE: -ABS. (AA) FROM LOWER STATE (USUALLY GROUND STATE) -FLUORESCENCE (AF)

Winge, ICP-AES, An Atlas of Spectral Lines

C. E. MOOI	RE ATON	IIC ENE Mg I	TRANSITIONS TO GROUND STATE			
Config.	Desig.	J	Level	Interval		
3s²	382 1S	0	0. 00		$\frac{\text{Triplet} \rightarrow \text{singlet}}{\text{Farbidden na linear}}$	
3s(2S)3p	3p ³P° ◄	0 1 2	21 850. 3 68 21870. 426 21911. 140	20. 058 40. 714	Forbladen, no lines	
3s(2S)3p	3p ¹₽° ◀	1	35 051.36		$ Singlet \rightarrow singlet allowed$	
3s(2S)4s	4s 3S	1	41197. 37		$P \rightarrow S$ allowed	
3s(2S)4s	48 ¹ S	0	43503. 0 🧭		One line	
3s(2S)3d	3d 1D .	2	46403.14	,	$35051 \text{ cm}^{-1} = 285.3 \text{ nm}$	
3s(2S)4p	4 <i>p</i> ³P°	0, 1 2	47847 . 7 47851. 8	4. 1		
3s(2S)3d	3d 3D	3 2 1	47957. 035 47957. 018 47957. 047	0. 017 0. 029		
3s(2S)4p	4 <i>p</i> ¹ P°	1	493 46.6			
3s(2S)5s	58 ³ S	1	51872. 36 🗸	- - - -		
3s(2S)5s	58 ¹ S	0	52556. 37	•		
3s(2S)4d	4d 1D	2	53134. 70			
	1	1		1		

.

C. E. MOORE ATOMIC ENERGY LEVELS

		Mg II			
Config.	Desig.	J	Level	Interval	
3s	38 2S	1/2	0. 00		
3p	3p ²P° <mark>↓</mark>	1 <u>/</u> 1 <u>//</u> 2	35669.42 √ 35760.97	91. 55	
48	4s 28	½	69805. 19		
3 <i>d</i>	3d 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	71490. 41 71491. 32 -	[-1.000]	
4 <i>p</i>	4p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	80620.8 80651. 3	30. 5	
58	58 2S	1⁄2	92786. 2		
4 d	4 <i>d</i> 2D	$\left\{ egin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2} \end{array} ight.$	} 93312. 1		
<u>4</u> f	4f ² F°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \ 3^{1\!\!\!/_2} \end{array} ight.$	} 93800.0		
5 <i>p</i>	5p 'P'	1½ 1½	97454. 9 97469. 0	14. 1	
6 <i>s</i>	6s 2S	1⁄2	103198. 1		
5d	5 <i>d</i> ² D	$\left\{ egin{array}{c} 1^{1\prime_2} \ 2^{\prime_2} \ 2^{\prime_2} \end{array} ight.$	} 103421. 1		
5f	5f 2F°	$\left\{ egin{array}{c} 2^{1\!\!\!/_2} \\ 3^{1\!\!\!/_2} \end{array} ight\}$	} 103690. 2		

TRANSITIONS TO GROUND STATE

Doublet → doublet allowed
 P → S allowed
 Two J values in upper state,
 Two lines

35760 & 35669 cm⁻¹ 279.63 & 280.36 nm

FLAME ATOMIC ABSORPTION PREMIX SLOT BURNER

FURNACE ATOMIC ABSORPTION

Harris

Figure 9-9 A hydride generation and atomization system for atomic absorption spectrometry.

Skoog et al., 5th ed.

INDUCTIVELY COUPLED PLASMA – ATOMIC EMISSION SPECTROMETRY

ICP-AES

INDUCTIVELY COUPLED PLASMA (ICP)

AEROSOL GAS FLOW INTO AXIAL CHANNEL

NEBULIZATION

Browner & Boorn, Anal. Chem. 1984, 56, 786A, 875A. Not Sharp, J. Anal. Atomic Spectrom. 1988, 3, 613, 939. req'd. Sneddon, Sample Intro in Atomic Spectroscopy, Elsevier, 1990.

<u>Pneumatic Nebulizer</u> - liquid disrupted by gas flow CONCENTRIC NEB., MEINHARD NEB.

Fig. 21. Cooled spray chambers for solvent removal. a) cooled double pass Scott chamber b) Cyclone chamber, side and top views. In both chambers, most of the large droplets are deposited at the bends, while fine droplets pass out to the plasma.

* SOLUTIONS : 1) ADJUST PLASMA CONDITIONS TO ATOMIZE MATRIX

2) SEPARATE Ca FROM U!

SELECT OBSERVATION POSITION?

SPECTROMETER

LENS

YO, Y(I), Y(II) EMISSION ZONES COURTESY VARIAN

IONIZATION IN ICP

H 0.1						_											θH
IJ	Be			M	+/(N		+ N	1)	(%)		B	C	N	0	7	Ne
100	75			•				-		-		58	5	0.1	0.1	9e-4	6e-6
Na 100	рМ 88											IA 80	Si 85	Р 33	S 14	Cl 0.9	Ar 0.04
К	Ca	Sc	iT	V	۱Ĵ	Mn	Fę	00	Ni	υD	Zm	Ga	Ge	As	Se	Br	Kr
100	99,1	100	66	66	98	95	96	93	91	90	75	86	90	52	33	5	9.0
dЯ	Sr	Y	Zr	dИ	сM	٦C	Ru	Rh	bq	рA	bC	n	Sn	Sp	θT		эX
100	96,4	86	66	86	98		96	94	93	93	85	66	96	78	66	29	8.5
SO	Ba	La	Hf	Ta	W	Re	50	1	Pt	ųА	рH	IT	dq	Bi	PO	At	Rn
100	91, 9	90,10	96	95	94	93	78		62	51	38	1 100	97,0.0	92			
17	Ra	Ac		·	·	·				·	·	·	·				<u> </u>
	I			eD	۱۹	þИ	Pm	Sm	Eu	bƏ	dT	Dy	oН	١Э	mT	dY	μJ
				96,2	90,10	*66		97,3	100*	93,7	*66	100*		*66	91,9	92,8	
0/	M	י +2		Th 100*	Ра	U 100*	qИ	Pu	Am	Cm	Bk	Cf	Es	Fm	bM	οN	Lw

T = 7500 K $n_e = 1 \text{ x } 10^{15} \text{ cm}^{-3}$

*These elements also make M⁺²

VERTICAL EMISSION PROFILES, SELECT OBS. POSITION

OBSERVATION HEIGHT

INTEGRATE EMISSION MATRIX EFFECTS **MATRIX EFFECT CANCELS** SAME LINE ION LINE 1% Na MATRIX CLEAN SOLN. ***Other matrices** may not show same cancellation effect!

OBSERVATION HT.

SIGNAL

Sequential ICP Monochromator

TYPES OF GRATING SPECTROMETER ROWLAND CIRCLE MOUNT

PASCHEN - RUNGE MOUNT, DIRECT READER

CONCAVE GRATING FOCUSES COMPONENTS ONTO CIRCLE

ONE EXIT SLIT & PMT FOR EACH LINE DESIRED, PRESET DIFF. ANGLES

SIMULTANEOUS MEAS. OF AS MANY LINES AS PMTs

SHORT SCAN THRU EACH λ REGION WITH QUARTZ REFRACTOR PLATE

PASCHEN-RUNGE MOUNT, SPECTRO CIROS

HIGH RESOLUTION? LARGE LINEAR DISPERSION $D_1 = f D_a = f \ln \frac{1}{(d \cos \beta)} \quad F/n = f/D_p$ $\Omega = A_p/f^2 = \pi/4 (F/n)^2$

- 1. <u>LARGE f</u> (LARGE f-NUMBER, SMALL Ω LOW THROUGHPUT, LARGER INST. HARDER TO MAKE, LESS STABLE THERMALLY, ...)
- 2. FINELY-RULED GRATING, SMALL d (MECH. DIFFICULT)
- 3. <u>LARGE ORDER m</u> (LOW FSR = λ / m, ORDERS OVERLAP)
- 4. β 90°, cos β SMALL (DISP. CHANGES WITH λ , λ scale nonlinear).

SOLUTION: USE V. LARGE m ~ 50 - 100 β ~ 50° - 70° MEDIUM f LARGE d

***V. SHORT FSR?**

ECHELLE SPECTROMETER

ECHELLE SPECTROMETER

ECHELLE SPECTRUM

Figure 4.20. High-resolution spectrum from 220 to 400 nm obtained with echelle system and photographed onto film 25 mm square. [Reprinted from D. L. Garrett, S. D. Purcell, and R. Tousey (1962), *Appl. Opt., 1*, 726. By permission of the Optical Society of America.]

Figure 2. Scanning electron micrograph of the replicated echelle grating surface.

Figure 10-11 An echelle spectrometer with segmented array of charge-coupled devices. (From T. W. Barnard et al., Anal. Chem., 1993, 65, 1232. With permission.)

BAND STRUCTURE OF SEMICONDUCTORS

BANDGAP = E OF PHOTON HIGHEST λ

VALENCE BAND ELECTRONS LOCALIZED ON SPECIFIC ATOMS

Energy

CHARGE TRANSFER DETECTORS

2. READOUT SHIFT CHARGE MEASURE CHARGE EACH PIXEL

CHARGE COUPLED DETECTOR - CCD

1-D SPECTRUM? USE <u>BINNING</u>: -sum, read out all charges on single line. -noise of <u>one read only</u>.

AMP - SERIAL REGISTER

hν

C harge C onsumed D

CHARGE INDUCED DETECTOR CID - INTEGRATE STEP

*Collect <u>holes</u> under collecting element.

hν

n-doped Si

sensing elements

CID READ STEP

*Why use n-Si & holes? <u>Less mobile</u> than e-, holes easier to keep under collecting element.

SPECTRO CIROS PASCHEN-RUNGE MOUNT DISCRETE CCDs

LODs	" <u>RADIAL</u> " 1-10 ppb	<u>AXIAL</u> 20 – 200 ppt
LINEAR RANGE (FROM LOD)	~1e6	~1e6
SOLUTE LEVEL & MATRIX	1% SOLNS. NO PROBLEM	0.1% AT BEST DL
INTERFERENCE		1% OK IF ACCEPT MATRIX EFFECT OR SACRIFICE LOD TO 0.1 – 1 ppb
SPECTRAL INTERFERENCE	SUBSTANTIAL EITHER METHOD	

CHALLENGES FOR ICP-AES

- Improving LODs to subppb
- Reduce matrix effects due to EIS, Ca, acids, organics
- Improve precision and accuracy
- On-line sample treatment (preconcentration, matrix elimination, decomposition)
- Direct solids analysis using lasers

MANY VALENCE ELECTRONS MANY ENERGY LEVELS <u>COMPLEX EMISSION SPECTRA</u>

10-6

5

URANIUM

100 mg/L

	Techniques for elemental analysis								
	ICP-	<u>MS</u> <u>ICP-</u>	AES FAA	<u>S</u> GFA	AS				
•	Detection Limits	Excellent	Good	Good	Excellent				
•	Productivity	Excellent	Very goodGood	Low					
•	LDR	10 ⁵	10 6/10 10 HDD	10 ³	10 ²				
•	Precision	1-3 %	0.3-2 %	0.1-1 %	1-5 %				
•	Spectral interference	Few	Common	Almost none	e Very few				
•	Chemical interference	Moderate	Few	Many	Many				
•	Ionization	Minimal	Minimal	Some	Minimal				
•	Mass efffects	High on low	none	none	none				
•	Isotopes	Yes	none	none	none				
•	Dissolved solids	0.1-0.4 %	up to 30 %	0.5-3 %	up to 30 %				
•	No. of elements	~75	~73	~68	~50				
•	Sample usage	low	medium	high	very low				
•	Semi-quantitative	yes	yes	no	no				
•	Isotope analysis	yes	no	no	no				
•	routine operation	Skill required	easy	easy	skill required				
•	Method development	skill required	skill required	easy	skill required				
•	Running costs	high	high	low	medium				
•	Capital costs	very high	high	low	medium				