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Abstract 

Identification of patterns in analytical chemical data and interpretation of observed differences is 

a frequent task for forensic chemists. A fiber examiner might perform UV/visible 

microspectrophotometry on known and questioned fibers to evaluate possible associations 

between source and location. Multivariate statistics enable confirmation of statistical validity of 

discrimination between different polymer classes and dyed textile fibers, visualization of 

significant differences between groups of spectra discrimination, and tracking of spectral 

changes with environmental changes. The fibers and associated spectra in the database, in 

combination with validated computer programs, represent an extensible tool for fiber 

comparisons in casework and should also be of value in quality control and training of analysts. 

In this paper, the application of linear discriminant analysis to a data base of over 5,000 

UV/visible absorbance and fluorescence spectra is described. 

 

Introduction 

Questioned and known fibers are often first compared using optical microscopy.1,2 Polarized 

light microscopy (PLM)3 or Fourier transform infrared spectroscopy4 can be used to determine 

the generic fiber type (polyester, acrylic, nylon, cotton, etc.). These techniques are 
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nondestructive, maintain the integrity of the original sample, prevent sample contamination, 

minimize sample handling, and decrease overall analysis time. Visible, ultraviolet (UV)/visible, 

and fluorescence microspectrophotometry (MSP) also offers direct, relatively inexpensive, and 

informative means of characterizing dyed fibers. If spectra of the known and questioned fibers 

match, the hypothesis that the fibers originate from a common source should not be rejected.  

UV/visible transmission microspectrophotometry has been used to study single cotton fibers 

dyed with vat dyes such as indigo and indigo derivatives.5 Because dye(s) are often the major 

source of fluorescence on dyed fibers, fluorescence spectra present additional opportunities for 

fiber discrimination. Macrae et al.6 reported an increase in discriminating power for fiber 

comparisons when using UV/fluorescence compared to using white light bright field comparison 

microscopy. Carroll7 claims that differences in fluorescence are consistently correlated with the 

manufacturer, thus suggesting increased discrimination from the use of fluorescence 

measurements. Cantrell et al.8 reported fluorescence microscopy of 3025 textile fibers collected 

from movie theater seats. 

Discriminating power was introduced into discussions of trace evidence comparison in the 

late 1960’s to early 1970’s.9-11 Given an analytical technique used to discriminate between two 

different groups of objects, what is the probability that two randomly chosen objects selected 

from a combined population will match one another? Discriminating power of a technique is 

often evaluated by comparing how well two items can be differentiated from one another 

compared to how well two objects might be expected to match by chance.14 Roux et al.12 

calculated discriminating power as the ratio of the number of discriminated pairs of samples to 

the total number of possible pairs in a study on the evidential value of ballpoint pen inks. 
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Experimental variability in analytical results “limits the ability to differentiate samples that 

are, in fact, different and from different sources”.13 Multivariate statistics offers an interpretative 

methodology for discerning significant differences among patterns. Multivariate statistics have 

been applied to identification of homicides vs. suicides and the prediction of 

homicide/perpetrator relationships14-16, forensic discrimination of automotive paint samples17, 

copy toners18,19, and counterfeit coins.20 Additional applications include forensic discrimination 

of UV/visible spectra from soil21, classification of prepaid cards by multivariate analysis of X-

ray fluorescence data22, modeling of color properties of a white pigment23, sex determination by 

patella measurements24, and discrimination of ball-point pen inks based on UV/visible spectra.25 

The present paper describes linear discriminant analysis (LDA) for evaluating discrimination of 

UV/visible absorbance and fluorescence MSP for analysis of textile fibers. 

 

Methods and Materials 

Samples of commercially dyed cotton, polyester (polyethylene terephthalate), acrylics (at 

least 85 % acrylonitrile), and nylon 6,6 were obtained from commercial sources. Fibers of 11 

different colors are included, with blue, brown, and green being the largest color groups. Micro 

tweezers and a razor blade were used to obtain single fibers from each piece of fabric. Samples 

were positioned on a microscope slide using micro tweezers. Spectral grade Permount® (Fisher 

Scientific, Fair Lawn, NJ) was used to mount fibers on glass slides with glass cover slips. 

The collection of about 500 dyed textile fibers was used to generate a reference data set of 

24,150 UV-visible absorbance spectra and fluorescence spectra for evaluating discrimination of 

different MSP approaches. Spectra were obtained using a Quantum Detection Instrument (QDI) 

1000 MSP (CRAIC Technologies, Altadena, CA) using GRAMS/AI 7.00 software (Thermo 
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Galactic, Salem, NH). The MSP was operated in transmission (xenon source) and fluorescence 

(mercury source) modes using a 15× collecting objective. UV/visible spectra of textile fibers 

were produced by ratioing fiber spectra against a reference spectrum and taking an average of 

100 scans over the spectral range of 200-850 nm at a bandwidth of 10 nm. The integration time 

for the charged coupled device detector was set to ~4 ms in transmission mode and to 200 ms in 

fluorescence mode. Fluorescence was produced using excitation wavelengths of 365, 405, 436, 

and 546 nm. 

All data processing was performed on the spectra, saved as comma separated variable (CSV) 

files. Absorbance spectra were truncated to range from 330 nm (the lower UV/visible cut-off for 

use of Permount® on glass slides) to 850 nm. Fluorescence spectra were truncated at a lower 

wavelength cutoff appropriate for the excitation cube in use (390, 444, 470, and 581 nm for 365, 

405, 436, and 546 nm excitation, respectively). The lowest intensity in all spectra set to zero by 

subtracting the lowest non-zero spectral intensity found in each spectrum. Each absorbance 

spectrum was normalized to reduce systematic variations (e.g., variations in dyeing) by dividing 

spectral intensities by the sum of spectral intensities across the spectrum; fluorescence spectra 

were not normalized. All data treatment (including PCA, LDA, and associated graphics) was 

performed using a program, Fiber Spectrum Explorer, written in MatLab (The MathWorks, Inc., 

Natick, MA). 

 

Results and Discussion 

To use multivariate statistics, multiple replicate spectra must be obtained from each 

individual fiber. Replicate spectra assess experimental variability and facilitate detection of 

unrepresentative spectra. The 10 replicate spectra taken of each of 483 fibers for our study are a 
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minimally acceptable number for these purposes. LDA calculates the ratio of variation between 

the averages of replicate spectra for different fibers compared to the variation within groups of 

replicate spectra of the same fiber. The first source of variation is the signal the fiber examiner is 

trying to detect, i.e., whether the fibers have different spectral signatures; the second source is 

sampling and measurement uncertainty. If the ratio of between- to within-group variation is not 

larger than that which could have occurred by chance, differences between spectra can not be 

said to be real. LDA applied to forensic data is described by Morgan and Bartick.26 

Brown fibers are one of the three largest color groups in our database. For this presentation, 

brown acrylic fibers (17 fibers) were selected as representative of this large group. Figure 1 

shows the projections of the 170 spectra into the space of the first three canonical variates (or 

discriminant axes), displaying 89.5% of the between-to-within group variation in the data. The 

three-dimensional projection can be rotated, but it is not possible to find a view from which no 

overlap of groups is apparent. However, not all the systematic differences (between-to-within 

group variation) are seen in these two projections (more than 10% is not seen in Figure 5). Leave 

one-out cross validation26 correctly classified 147 of the 170 spectra, for a classification accuracy 

of 86.47%. Classification results displaying the discriminating power of UV/visible MSP for the 

17 groups of brown acrylic fibers are shown in the confusion matrix in Table 1. 

Comparisons of classification accuracy for UV/visible and fluorescence MSP over about 500 

fibers and 25,000 spectra are summarized in Table 2. Entries marked ‘x’ are sets for which LDA 

was not performed because of the small number of fiber groups. In columns for absorbance, and 

for fluorescence at each of the four excitation wavelengths, the number of correctly classified 

spectra (based on leave-one-out cross validation) is listed. 



 6

Figure 1. Projection of all brown acrylic absorbance spectra into the space of the first three 
canonical variates, displaying 89.5% of the between-to-within group variation in the spectra. A 
95% confidence region is plotted around each group of ten replicate spectra for each of the 17 

different fibers (numbered 1-17). 
 

 

Table 1. Confusion matrix displaying the LDA leave-one-out cross-validated classification 
results for the brown acrylic fiber absorbance spectra. 

 
Group  1     2     3    4      5     6    7     8      9   10   11    12   13   14   15   16  17  Totals 
     1      7     3     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0    10 
     2      3     6     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0    10 
     3      0     0    10    0     0     0     0     0     0     0     0     0     0     0     0     0     0    10 
     4      0     0     0    10    0     0     0     0     0     0     0     0     0     0     0     0     0    10 
     5      0     0     0     0     9     0     0     0     0     0     0     0     1     0     0     0     0    10 
     6      0     0     0     0     0    10    0     0     0     0     0     0     0     0     0     0     0    10 
     7      0     0     0     0     0     0    10    0     0     0     0     0     0     0     0     0     0    10 
     8      1     5     0     0     0     0     0     4     0     0     0     0     0     0     0     0     0    10 
     9      0     0     0     0     0     0     0     1     9     0     0     0     0     0     0     0     0    10 
    10     0     0     0     0     0     0     0     0     0    10    0     0     0     0     0     0     0    10 
    11     0     0     0     0     0     0     0     0     0     0    10    0     0     0     0     0     0    10 
    12     0     0     0     0     0     0     0     0     0     0     0    10    0     0     0     0     0    10 
    13     0     0     0     0     0     0     0     1     0     0     0     0     9     0     0     0     0    10 
    14     0     0     0     0     0     0     0     0     0     0     0     0     0    10    0     0     0    10 
    15     0     0     0     0     0     0     0     0     0     0     0     0     0     0     7     0     3    10 
    16     0     0     0     0     0     0     0     0     0     0     0     0     2     0     0     8     0    10 
    17     0     0     0     0     0     0     0     0     0     0     0     0     0     0     2     0     8    10 
Totals 11   14   10    10    9    10   10    7     9   10   10    10   12   10    9     8   11   170 
 
Classification accuracy = 147/170 =  86.47 % 
Classification error = 23/170 =  13.53 % 
Proportional chance accuracy =   10.0/170 =   5.88 % 
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Table 2. Classification accuracy for all fiber types and colors. 

Color Fiber Type Groups Absorbance FE 365 FE 405 FE 436 FE 546 
Black Acrylic 6 60 55 57 52 59 
  Cotton 8 73 67 63 59 68 
  Nylon 6,6 13 122 78 77 67 73 
  Polyester 14 102 93 100 86 77 
Blue Acrylic 30 274 229 263 269 271 
  Cotton 21 160 121 127 122 115 
  Nylon 6,6 26 230 163 170 162 216 
  Polyester 19 140 157 159 158 156 
Brown Acrylic 17 147 126 152 142 147 
  Cotton 22 134 150 174 168 159 
  Nylon 6,6 16 100 92 78 70 75 
  Polyester 39 173 261 295 277 291 
Green Acrylic 16 150 133 147 152 150 
  Cotton 23 177 140 174 157 112 
  Nylon 6,6 15 133 103 80 90 97 
  Polyester 19 113 143 158 157 151 
Grey Acrylic 5 50 50 48 50 50 
  Cotton 7 60 58 60 60 48 
  Nylon 6,6 8 60 41 53 54 31 
  Polyester 6 39 51 52 58 54 
Orange Acrylic 3 30 30 30 30 30 
  Cotton 4 40 40 40 40 40 
  Nylon 6,6 7 66 46 56 55 45 
  Polyester 3 30 30 30 30 30 
Pink Acrylic 6 60 57 58 60 60 
  Cotton 8 53 49 64 56 38 
  Nylon 6,6 2 20 20 20 20 19 
  Polyester 2 18 20 20 20 20 
Purple Acrylic 10 87 93 99 98 96 
  Cotton 9 73 73 81 81 77 
  Nylon 6,6 7 70 58 55 46 54 
  Polyester 1 x x x x x 
Red Acrylic 16 159 144 154 151 154 
  Cotton 8 71 62 66 68 74 
  Nylon 6,6 12 108 84 76 75 82 
  Polyester 10 90 73 82 78 94 
White Acrylic 11 71 75 83 81 68 
  Cotton 2 19 16 13 14 13 
  Nylon 6,6 4 24 33 35 39 38 
  Polyester 7 64 57 60 65 58 
Yellow Acrylic 5 49 50 50 50 48 
  Cotton 13 73 84 77 84 71 
  Nylon 6,6 1 x x x x x 
  Polyester 4 39 40 38 40 29 

Total Spectra 4830 3811 3545 3774 3691 3638 
% Classification Accuracy   78.90 73.40 78.14 76.42 75.32 
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Trends are difficult to spot, but some effects are suggested. For the dyed acrylic fibers, 

UV/visible and fluorescence MSP at the 405 nm excitation wavelength have the highest 

discriminating power, while excitation at 436 and 545 had slightly lower discriminating power. 

For the dyed cotton fibers, UV/visible MSP and fluorescence MSP at the 405 nm excitation 

wavelength have the highest discriminating power. Excitation at 436 had slightly lower 

discriminating power. For the dyed nylon 6,6 fibers, UV/visible MSP had the highest 

discriminating power; fluorescence had lower discriminating power. For the dyed polyester 

fibers, fluorescence at the higher three excitation wavelengths had the highest discriminating 

power and UV/visible MSP had a much lower discriminating power. In terms of discriminating 

power for different colored fibers, UV/visible MSP typically has the highest discriminating 

power. Consistent with the overall average trend in Table 1, discriminating power tends to be 

higher at the 405 and 436 fluorescence excitation wavelengths. It should be mentioned that white 

fibers in our database have not been dyed with fluorescent brighteners and discrimination of 

white acrylic and cotton fibers was poor. However, discriminating power with white polyester 

using absorbance or fluorescence, and with fluorescence data taken for white nylon 6,6, was 

high. 

 

Conclusions 

Multivariate statistical methods provide tools for handling high dimensional spectral data and 

for assessing the uniqueness of a particular fiber relative to other fibers with which it is to be 

compared. Identification of which analyses produce the most discriminating data insures that the 

limited time and resources available in forensic laboratories are appropriately applied. 

Multivariate statistics is of great utility in exploring relationships among groups of spectra, in 
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visualizing differences between groups of spectra, and in assessing quantitatively the 

discriminating power of different spectroscopic techniques. 

Statistics should not be used by themselves to support a hypothesis of common origin for 

different fibers; in our case, classification results can be interpreted with knowledge of the dyes 

present on each fiber. Both UV/visible and fluorescence spectra provide discriminating 

information, depending on the particular dyed textile fibers under comparisons. UV/visible 

microspectrophotometry, by itself, was the best single discriminating technique. The 

discriminating power of fluorescence MSP approaches that of UV/visible MSP, and appears to 

add considerable discrimination beyond that provided by absorbance measurements. For colored 

fibers, the excitation wavelengths 405 and 436 provide the best discriminating power. Which 

fluorescence excitation wavelength is most discriminating depends of the dyes present on the 

fiber. A further caveat is that the dye producing the major color of the fiber may not always be 

the component that produces discrimination among similar fluorescence spectra.  

 

Acknowledgments 

This research was supported under a contract award from the Counterterrorism and Forensic 

Science Research unit of the Federal Bureau of Investigation’s Laboratory Division. Points of 

view in this document are those of the authors and do not necessarily represent the official 

position of the Federal Bureau of Investigation. 



 10

References 

1. Gaudette, BD. “The forensic aspects of textile fiber examination,” in: Forensic Science 
Handbook, Volume II, Saferstein R, Ed., Prentice-Hall: Englewood Cliffs; 1988; p. 209-272. 

2. Robertson J, Grieve M, Eds., Forensic Examination of Fibres 2nd edition. London: Taylor & 
Francis: 1999. 

3. Stoeffler SF. J Forensic Sci 1996; 41: 297-299. 
4. Kirkbride KP, Tungol MW. “Infrared microspectroscopy of fibres,” in: Forensic Examination 

of Fibres 2nd edition. Robertson J, Grieve M. Eds., London: Taylor & Francis: 1999; pp 179-
222. 

5. Suzuki S, Suzuki Y, Ohta H, Sugita R, Marumo Y. Sci Justice 2001, 41: 107-111. 
6. Macrae R, Dudley RJ, Smalldon KW. J Forensic Sci 1979, 24: 117-129. 
7. Carroll GR. “Forensic fibre microscopy,” In: Forensic Examination of Fibres; Robertson, J., 

Ed.; Ellis Horwood: New York, NY, 1992, pp 99-124. 
8. Cantrell S, Roux C, Maynard P, Robertson J. Forensic Sci Int 2001, 123: 48-53. 
9. Tippett CF, Emerson VJ, Fereday MJ, Lawton F, Jones LT, Lampert SM. J Forensic Science 

Society 1968, 8: 61-65. 
10. Jones DA. J Forensic Science Society 1972, 12: 355-359. 
11. Smalldon KW, Moffat AC. J Forensic Science Society 1973, 13: 291-295. 
12. Roux C., Novotny M, Evans I, Lennard C. Forensic Sci Int 1999, 101: 167-176. 
13. Aitken CGG, Stoney DA. The Use of Statistics in Forensic Science, Ellis Horwood: New 

York; 1991. 
14. Karlsson T. Forensic Sci Int 1998, 94: 183-200. 
15. Karlsson T. Forensic Sci Int 1999, 101: 33-41. 
16. Karlsson T. Forensic Sci Int 1999, 101: 131-140. 
17. Kochanowski BK, Morgan SL. J Chromatogr Sci 2000, 38(3): 100-108. 
18. Egan WJ, Morgan SL, Bartick EG, Merrill RA, Taylor HJ. Anal Bioanal Chem 2003, 376: 

1279-1285. 
19. Egan WJ, Galipo RC, Kochanowski BK, Morgan SL, Bartick EG, Miller ML, Ward DC, 

Mothershead RF II. Anal Bioanal Chem 2003, 376: 1286-1297. 
20. Hida M, Sato H, Sugawara H, Mitsui T. Forensic Sci Int. 2001, 115: 129-134. 
21. Thanasoulias NC, Piliouris ET, Kotti MS, Evmiridas NP. Forensic Sci Int 2002, 130: 73-82. 
22. Hida M, Mitsui T. Forensic Sci Int. 2001, 119: 305-309. 
23. Rajer-Kanduĉ K, Zupan J, Majcen N. Chemom Intell Lab Sys 2003, 65: 221-229. 
24. Introna F Jr, Vella GD, Campobasso CP. Forensic Sci Int. 1998, 95: 39-45. 
25. Thanasoulias NC, Parisis NA, Evmiridas NP. Forensic Sci Int 2003, 138: 75-84. 
26. Morgan SL, Bartick, EG, “Discrimination of forensic analytical chemical data using 

multivariate statistics,” in: Forensic Analysis on the Cutting Edge: New Methods for Trace 
Evidence Analysis, Blackledge RD, Ed., John Wiley & Sons, New York, 2007; pp. 331-372. 


