Determination of Biological Sex
Anthropological Protocol

- Is the bone human? Context?
- How many individuals?
- Biological profile:
 - **Biological sex determination**
 - Morphology/anthroposcopical (visual)
 - Metric/anthropometric (measurement)
 - Age-at-death
 - Ancestry
 - Stature
- Unique pathology or condition?
- Trauma?
Biological Sex vs. Gender

- **Biological Sex**
 - The physical/anatomical difference between males and females
 - Often based on the type of gametes produced by the gonads (ova = female, spermatozoa = male)

- **Gender**
 - Social construct
 - Specifies the socially and culturally prescribed roles men and women are to follow
 - Can be influenced by an individual’s biological sex
Biological Sex Determination

• Sexual dimorphism
 – Size
 • Males larger, more muscled than females
 – Architecture
 • Female pelvis designed to bear children

Image courtesy of Ashley L. Humphries
Population Differences

European Female

Asian Male
Sex Determination of Immature Skeletons

- Difficult, not very accurate
- Sex differences do not become pronounced until puberty
Accuracy of Indicators
Anthroposcopnic (Visual)

- Skull and pelvis together
 - 90-100% accuracy
- Pelvis alone
 - 90-95% accuracy
- Skull alone
 - 80-90% accuracy
- Long bones alone
 - ~80% accuracy

Image from www.edupics.com
Sex Differences of the Pelvic Girdle

<table>
<thead>
<tr>
<th>ANTERIOR VIEW</th>
<th>SUPERIOR</th>
<th>INFERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMALE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>90 degrees</td>
<td>Sacrum Tilted Back</td>
<td>Flared Ilia</td>
</tr>
<tr>
<td>MALE</td>
<td></td>
<td></td>
</tr>
<tr>
<td><90 degrees</td>
<td>Sacrum Tilted Forward</td>
<td>Narrow Ilia</td>
</tr>
</tbody>
</table>
Greater Sciatic Notch

Males: Narrower Females: Wider

Preauricular Sulcus

Males: Absent, Rare

Females: Usually Present

Image from Byers (2008)
Ischiopubic Ramus

Male: Wide, blunt Female: Narrow, sharp
Pubic Body

Males: Triangular Females: Rectangular, Square
Male or Female?

A.

B.

Advances in Forensic Anthropology TTW

Biological Sex Determination
Male or Female?
Male or Female?
Sex Differences of the Skull (Anthroposcopically)

Nuchal Area

Males: rugged, sometimes w/ hook
Females: smooth, hook uncommon
Mastoid Process

Males: Larger, more projecting
Females: Smaller, non-projecting
Supra-Orbital Margin

Males: Rounded

Females: Sharp
Browridges
Males: Large or pronounced

Females: Small or none
Frontal Bone

Males: Slanted

Females: High, rounded
Shape of the Mandible

Males: Broad, square
Female: Narrow, pointed, rounded
Male or Female?
Male or Female?
Determining Sex
Metric Approaches

- AKA: Anthropometry
- Quantified approaches
- Early comparisons based on single measurements or indices
- Recent analyses have taken advantage of multivariate statistics
- Accurate measurements require knowledge of the skeleton and its various features and landmarks

Images from Bass (2005)

Image from http://www.anthro4n6.net/forensics/
Metric Analysis - Postcrania

- Femoral Head Diameter
 - European American
 - Female <42.5
 - Female? 42.5-43.5
 - Indeterminate 43.5-46.5
 - Male? 46.5-47.5
 - Male >47.5
 - From: Stewart (1979)
Metric Analysis - Postcrania

- **Humeral Head Vertical Diameter**
 - Females: <43mm
 - Indeterminate: 44-46mm
 - Males: >47mm

- **From: Stewart (1979)**

![Image from www.edupics.com](www.edupics.com)
Ischio-Pubic Index

- \(\frac{\text{pubic length}}{\text{ischium length}} \times 100 \)
 - Male <84 - Female >94

- If ancestry is known:
 - African American
 - Male <84 - Female >91
 - European American
 - Male <91 - Female >94

- From: Bass (2005)
Cranial Measurements
Allow researchers to summarize the dimensional elements of Sexual Dimorphism

- Size and shape analysis based on linear distances between landmarks
- Linear measurements plugged into discriminant function equations to produce sectioning points
- Female <sectioning point> Male
- Ancestry dependent standards
- Beware of standards based on inappropriate data

Images from Bass (2005)
Example Discriminant Functions:
Sex Estimation using Cranial Metrics
African American: \(\text{measurement} \times \text{coefficient} = \text{value} \)

- Max breadth (XCB): \(142 \times 9.22 = 1309.24 \)
- Max length (GOL): \(190 \times 7.00 = 1330 \)
- Basion-Bregma (BaBr): \(132 \times 1.00 = 132 \)
- Basion-Prosthion (BaPr): \(105 \times 5.89 = 618.45 \)
- Bizygomatic breadth (BB): \(134 \times 31.11 = 4168.74 \)
- Palatal breadth (PB): \(57 \times -30.56 = -1741.92 \)
- Nasion-alveolare (NaAlv): \(75 \times 20.22 = 1516.5 \)
- Mastoid length (LM): \(37 \times 47.11 = 1743.07 \)
- **Sum of all values: 9076.08**

Greater than 8171.53? = yes
Male or female? = **Male**
3D-ID

• Linear measurements taken between endpoints (landmarks) provide incomplete information about their relative positions

• Geometric Morphometrics
 - Size and shape analyses that uses Cartesian coordinates of anatomical landmarks from which traditional linear measurements are taken

• 3D-ID
 - X, Y, Z coordinates from an unknown are compared to a known reference population

Image from Slice and Ross http://www.3d-id.org (2011)
Cited Scientific References

Questions?

Technology Transition Workshops are a project of NIJ’s Forensic Technology Center of Excellence, operated by the National Forensic Science Technology Center (www.nfstc.org), funded through cooperative agreement #2010-DN-BX-K210.

These training materials are only for the course instructors and course participants and are for purposes associated solely for this course. Some of the materials may be subject to copyrights held by third parties. None of these materials may be: a) further disseminated or b) accessed by or made available to others. Individuals with questions concerning the permissibility of using these materials are advised to consult NFSTC at info@nfstc.org.
Contact Information

Ashley Humphries, M.A.
Department of Anthropology
University of South Florida
ahumphri@mail.usf.edu

Note: All images are courtesy of Dr. Ann H. Ross, unless otherwise indicated.