Addressing the National Academy of Sciences’ Challenge:

Methods for Statistical Pattern Comparison of Striated Tool Marks
Outline

• Introduction and the Daubert Standard
• Previous Statistical Studies on Striated Tool Marks
• Details of Our Approaches
 • Results of “Low Cost” method
 • Preliminary Results with Confocal Microscopy
Introduction

• DNA profiling the most successful application of statistics in forensic science.
 • Responsible for current interest in “raising standards” of other branches in forensics…??

• No protocols for the application of statistics to comparison of tool marks.
 • Our goal: application of objective, numerical computational pattern comparison to tool marks

Caution: Statistics is not a panacea!!!!
The Daubert Standard

- **Daubert (1993)** - Judges are the “gatekeepers” of scientific evidence.
- Must determine if the science is reliable
 - Has empirical testing been done?
 - Falsifiability
 - Has the science been subject to peer review?
 - Are there known error rates?
 - Is there general acceptance?
- Federal Government and 26(-ish) States are “Daubert States”
Previous Statistical Studies On Striated Tool marks

- Basiotti 1959, **Consecutive Matching Striations**
- Geradts 1994, **TRAX database**
- Neel and Wells 2007, **CMS testing**, 4000 striated tool mark comparisons.
 - “There is a statistically significant difference between the CMS runs observed in the best KNM and the most conservative KM.”
 - Database of striated tool mark profiles and corresponding software for identifications
Previous Statistical Studies On Striated Tool marks

• Howitt, Tulleners et al. (2008)
 • A theory for striation patterns
• Bachrach, Koons et al. (2010),
 • Screwdrivers and Pliers
 • ID software for use with confocal microscopy
• Wei, Vorburger, Ballou, et al. (2010)
 • L.E.A.s on bullets
 • Also ID software for use with confocal microscopy
“Low cost” Approach For Striated Tool Marks

- Collect several high quality 0.25” slotted screwdrivers
 - All screwdrivers purchased in packages of three
• Generate many standard reproducible striation patterns for each screwdriver.
 • Modeling clay used as impression medium
• Measure line/grove positions from edges of patterns
• Descritize width of pattern into 0.05 mm increments
 • In list 140 increments long (7 mm) record 1 if line/grove in a box, 0 otherwise
 • Gives 140-dimentional **feature vectors** for each pattern
• Slightly shift intra-screwdriver patterns if necessary (registration)

• For this study:
 • Nine screwdrivers so far
 • Data recorded for side A of screwdrivers
 • Screwdriver 1, 8 striation patterns
 • Screwdriver 2, 6 striation patterns
 • Screwdriver 3, 9 striation patterns
 • Screwdriver 4, 8 striation patterns
 • Screwdriver 5, 9 striation patterns
 • Screwdriver 6, 9 striation patterns
 • Screwdriver 7, 8 striation patterns
 • Screwdriver 8, 9 striation patterns
 • Screwdriver 9, 9 striation patterns
 • Total 75 striation patterns so far
Statistics

- Principal Component Analysis
 - Why?
 - Judges and Juries Like Pictures!!
- Kernel Partial Least Squares

- Find lowest dimensional “summary” of striation pattern that is still able to predict screwdriver identity.

\[\hat{Y} = \hat{X}Q^T + \text{Err} \]

Classification of Screwdriver 5 in 24D
Determine efficient decision rules in the absence of any knowledge of probability densities for the data

- Maximum margins of separation, SVM:

- 4D PCA-SVM
 - Range of estimated error rates: 0%-2%

- 8D PLS-DA
 - Range of estimated error rates: 0%-3%
• Conformal Prediction Theory

 • New, but has roots in 1960’s with Kolmogorov’s ideas on randomness and algorithmic complexity.

 • Can be used with any statistical pattern classification algorithm.

 • Independent of data’s underlying probability distribution.
 • This is a very important property for forensic tool mark analysis!!

 • For identification of patterns, method produces:
 • Level of confidence, 1-ε
 • Measure of how likely identification is to be correct
 • Level of credibility
 • Indicative of quality of data set

 • Results are valid: \(P(\text{error}) \leq \varepsilon \)
Conformal Prediction Theory

- 95% CPT on 3-nearest neighbour classification rules

<table>
<thead>
<tr>
<th>Data Dimension</th>
<th>4D</th>
<th>121D</th>
<th>121D-SIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Line Mode</td>
<td>% Error</td>
<td>0%</td>
<td>6%</td>
</tr>
<tr>
<td>% Unique and Correct I.D. Produced</td>
<td>100%</td>
<td>94%</td>
<td>96%</td>
</tr>
<tr>
<td>% Efficiency</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>% Empty Intervals</td>
<td>0%</td>
<td>6%</td>
<td>4%</td>
</tr>
<tr>
<td>Off-Line Mode</td>
<td>% Error</td>
<td>0%</td>
<td>6%</td>
</tr>
<tr>
<td>% Unique and Correct I.D. Produced</td>
<td>100%</td>
<td>94%</td>
<td>94%</td>
</tr>
<tr>
<td>% Efficiency</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>% Empty Intervals</td>
<td>0%</td>
<td>6%</td>
<td>6%</td>
</tr>
</tbody>
</table>

- 95% CPT on PCA-SVM classification rules

<table>
<thead>
<tr>
<th>Data Dimension</th>
<th>4D</th>
<th>121D</th>
<th>121D-SIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Line Mode</td>
<td>% Error</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>% Unique and Correct I.D. Produced</td>
<td>94%</td>
<td>94%</td>
<td>96%</td>
</tr>
<tr>
<td>% Efficiency</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>% Empty Intervals</td>
<td>6%</td>
<td>6%</td>
<td>4%</td>
</tr>
<tr>
<td>Off-Line Mode</td>
<td>% Error</td>
<td>0%</td>
<td>6%</td>
</tr>
<tr>
<td>% Unique and Correct I.D. Produced</td>
<td>100%</td>
<td>88%</td>
<td>97%</td>
</tr>
<tr>
<td>% Efficiency</td>
<td>100%</td>
<td>94%</td>
<td>100%</td>
</tr>
<tr>
<td>% Empty Intervals</td>
<td>0%</td>
<td>6%</td>
<td>3%</td>
</tr>
</tbody>
</table>
Current Approach For Striated Tool Marks

- Obtain striation pattern profiles from 3D confocal microscopy
• 3D confocal image of entire shear pattern
Shear marks on primer of two different Glock 19s
Shear mark on different cartridge casings from *same* Glock 19
Mean profile:

“Waviness” profile:

“Roughness” profile:
• 3D PCA-SVM Bootstrap error rate ~1%:
Acknowledgements

• National Institute of Justice
• New York City Police Department Crime Lab
• John Jay College of Criminal Justice

• Research Team:

 • Mr. Peter Diaczuk
 • Ms. Carol Gambino
 • Dr. James Hamby
 • Dr. Thomas Kubic
 • Mr. Jerry Petillo
 • Mr. Nicholas Petraco
 • Dr. Peter A. Pizzola
 • Dr. Jacqueline Speir
 • Dr. Peter Shenkin
 • Mr. Peter Tytell

 • Helen Chan
 • Manny Chaparro
 • Aurora Ghita
 • Frani Kammerman
 • Brooke Kamrath
 • Loretta Kuo
 • Dale Purcel
 • Rebecca Smith
 • Elizabeth Willie

• Chris Singh
• Melodie Yu