

Contribution to the Characterization, Identification and Comparison of Polyurethane Foam Particles

Skip Palenik Mark Palenik

Microtrace LLC

Elgin, IL USA

www.microtracescientific.com

Particles of plastic foam are occasionally encountered during the examination of microscopic trace evidence

The fact that they are usually observed as small particles (and thus easily transferable) is typically an indication that the source object has degraded

In cases where the source can be determined these particles can provide significant evidence of contact

Microscopical and microchemical methods are complimentary and have both proven of value in this type of analysis

Microscopy

- Stereomicroscopy
- Polarized light microscopy
- Phase contrast microscopy
- Color/MSP
- Fluorescence/MSF
- SEM-EDS / Micro-XRF

Stereomicroscopy

Shape Color

Some details of internal structure can often be observed even before mounting for PLM

Testing for elastomerism

Polarized light microscopy (Mounted in 1.660)

Birefringence

Phase contrast microscopy

Microspectrophotometry

Raman microspectroscopy

Fluorescence microscopy and Microfluorimetry

SEM-EDS Analysis

SEM-EDS Analysis

Micro-XRF spectrum showing bromine from flame retardant

Microchemical Methods – primarily instrumental

- Infrared microspectroscopy as neat particle in compression cell (if necessary)
- Infrared microspectroscopy after solvent extraction
- Raman microspectroscopy
- GC/MS
 - Solvent extraction
 - Pyrolysis

Micro-FTIR

Identify as polyurethane or other.

Classify as polyether or polyester.

 After extraction identify plasticizers (e.g. phthalates) and obtain spectrum of the neat polyurethane

Compare infrared spectra

Polyester type urethane - neat

Polyester urethane after acetone wash

Acetone extract from Foam 2

Polyether type urethane foam - neat

Polyether urethane after acetone wash

Acetone extract from foam 4

GC-MS

- Information from both extraction and pyrolysis. Extraction provides especially useful data on lower molecular weight compounds.
- Separation and identification of ingredients of the product (e.g. plasticizers, styrene, etc.)
- Study of breakdown products, which provide especially good points of comparison.

Summary

- By means of microscopical and microchemical techniques, it is possible to analyze and identify even single small polyurethane particles.
- By careful selection of techniques and their order of application, it is possible to characterize single polyuethane foam particles for purposes of comparison.
- Since these particles are typically degraded to some degree, GC-MS analysis of neat particles, their extracts or pyrolyzates provides a convenient and reliable means of comparison based on the degree of chemical alteration that the Q and K samples have undergone.

Thanks and acknowledgement

- Mark Palenik
 - Katie White
 - Jay Beckert
- Chris Palenik

