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A Common Situation in Forensics
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The similarity score is a numerical value measuring association of
the samples, with higher values suggesting that the samples come
from a common source.



A Sampling Model

Suppose we assume that we have some population of
objects which can lead to samples like those on the
preceding slide.

A very important consideration of the evidence evaluation
method is to know the probability that two randomly sampled
objects from different sources would lead (erroneously) to a
conclusion of a match. This quantity is called the random
match probability.

(The goal of this presentation is to obtain a valid upper
confidence limit for the random match probability based on a
sample.)



One way to assess the random match probability is to obtain
a random sample of n objects known to have each come from
a different source and calculate the similarity score for each
pair of objects. This is called taking all pairwise comparisons.

Let us call the score resulting from comparing sample i to
sample j

Sij-

There are N = n(n — 1) /2 possible comparisons™.



A Plausible Model for the
Correlation Structure of the s;;

The correlation between s;; and sy; should be:

* One if there are two subscripts in common
« A positive quantity if there is one subscript in common

« Zero if there are no subscripts in common



An Important Quantity

The mean of the scores from all possible pairs of different
source objects in the population is a very important quantity in
calculations of the random match probability based on
scores. We will call this parameter 6.

A plausible estimate for this quantity is the mean of the N
scores from the pairwise comparisons in the sample.

It will be important to have proper estimates of the variability
of this mean iIn forming upper confidence limits for the
random match probability.



Issues

Some researchers simply ignore the correlation structure and
proceed as if there is a sample of N independent scores.

Other researchers believe that the correlation structure forces
one to use only uncorrelated pairs (such as sy, s34, S, €tC.).

We will show that it is possible to account for the correlation
structure to create a confidence limit for the random match
probability.



A Mathematical Model for a Score

We assume that

S,;j=9+ai+aj+eij,

where 6 is an unknown parameter, the q; are i.i.d. N(0,0,?)
i=1,..,n, and the ¢;; are i.i.d. N(0,0,2), i=1,.n—1;j =
i+1,..n.

Our goal is to use this model to form a valid upper confidence
limit for the random match probability.



The Model in Matrix Terms

We can rewrite this model in matrix terms by writing the
scores (s;;) in lexicographic order as a vector y. The errors

(e;j) are listed in the same order and the a’s are listed in order

of their subscripts. There is a design matrix P (for pairwise)
which has N rows and n columns. P is mostly composed of
zeroes but has a one in the ith and jth columns for the row
corresponding to s;;.

Thus our model becomes

y=91N+Pa+e,

where y and e are as described above, a is the vector of the
a;, and 1, is an N by 1 vector of ones.



The Expected Value and Covariance
Matrix of the Vector of Scores

The N by 1 expected value of the vector of scores is just 61.

The N by N covariance matrix of the vector of scores is

¥ =0,y + 0,°PP.

We can convert the covariance matrix to a correlation matrix if
we wish. The resulting correlation matrix contains mostly
zeroes but has non-zero correlations of r = g,%/(0.% + 20,%)
In some positions.



Our Model Expressed Using Vectors and Matrices
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Correlation Matrix for n
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The Eigenstructure of X

There are N eigenvectors of Z:

» 1 eigenvector (v; = 15/+V/N)
with eigenvalue \; = 6,2 + 2(n — 1)g,?

 (n—1) eigenvectors (v, to v,,)
with eigenvalue A, = .2 + (n — 2)0,?

(N —n) eigenvectors (v,,,1 to vy)
with eigenvalue A\; = 7,2

Because eigenvectors are orthogonal, we have v; 1y = 0 for
all k > 1.



The Likelihood for the Vector of Scores

The log-likelihood can be written as
—2inL = In(2n) + In|Z| + (y — 01,)' 21 (y — 61y)

= In(2n) + lnA; + (n — DInA, + (N —n)ini,

N(7 — 6)? . Y k=2 VeV )y . V' s ViVi)y

’ K‘l A.z AS

= n2n) +InA; + (n — D)Ink, + (N — n)lni;
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Unbiased Estimates of
the Parameters of the Model

We can find unbiased estimators for all parameters in our
model: Firstlet MS, =SS,/(n—1) and MS, = SS,/(N —n).

0=y
.,  MS,—MS,
Ca =TT
6,” = MS,

These estimates are closely related to REML estimates. VWWe have derived

closed form versions of all three of these estimates.
(For future reference, let SS; = SS, + SS, and MS; = SS; /(N — 1).)



Some More Important Quantities

The variance of a randomly selected score (the similarity
score for two randomly selected objects) is given by

0.° = 0,° + 20,°.

The variance of the mean of all scores in the sample (V) is
given by
2 _ g 404>

N n

Oy

We can obtain unbiased estimates for each of these
quantities by plugging in the unbiased estimates of the
variance components. These will be designated by “hats”.



Some Other Related Quantities

The expected value of MS; is given by

n—1
0e2+2n+10a2

which is almost the same as o,2.

The expected value of MS;/N is given by

JLZ+ 1 \40,°
N n+1/ n

which is NOT AT ALL the same as o;°!




The Random Match Probability
Based on Our Model

For a given cutoff r, the random match probability is the
probability that a randomly selected s;; will exceed 7. Thatis

RMP = P{Sij > T}.

For our model
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Some Equivalent Mathematical Statements

The following statements are equivalent for any value of B (either

random or not random).

s ]Ej;;

i T —

u>‘1=

r4 Fa
T — H \
¥ ) ,..a‘ |'I _ [
|<B o
B I'.Il W
n J

T<Be 1|

Fal

T—QU‘
> (13-1(1 —B) =1L
Og

—

Thus we require a random quantity L such that

T—0
>L}=1—a:
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It is straightforward to convert such an interval to an

confidence bound for .

upper



A Hypothetical

Suppose for a moment that we knew o, and o, but that we
estimated 6 by y. Then

T—y 1—0
P — <Zgt=1—-a«
Oy Oy

BUT
T—y 1—6 T—60 71—y Oy
24 < Zy & > y—QQZ

We could use this to get our upper confidence bound for 7.
The resulting interval would have exactly correct coverage
probability.



What would happen if we ignored the
correlation structure?

If we ignored the correlation structure in this model, we could
use the same formula from the previous slide but substituting
the expected value of MS;/N for a;. This upper confidence

bound has some very bad properties.

Actual Coverage Probability for Hypothetical Method
(Nominal Coverage Probability 0.95, True RMP = 0.000001)
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A Confidence Interval Based on

Fieller’'s Theorem

Results for New Method Based on Fieller’s Theorem
(Nominal Coverage Probability 0.95; True RMP=0.001; 1,000,000 Simulations per Cell)

n p=.1 p=.5 p =1 p =2 p =10
9465 9433 9442 .9457 9481
50
.0022 .0042 .0055 .0068 .0085
9474 9467 .9469 9479 .9495
100
.0017 .0027 .0034 .0040 0048
9497 9490 9489 9495 9498
500
.0012 .0016 .0017 .0019 .0021
.9501 .9497 .9495 .9497 .9497
1000
.0012 .0014 .0015 .0016 .0017

Coverage Probability

Average Upper Bound



Conclusions

We have found a method which yields an approximately
correct confidence interval for the random match
probability based on pairwise comparisons.

This method can be used in any situation where the scores
can be transformed to approximate normality.

As long as the model is valid, an estimate of the random
match probability can be made even if no matches are
observed in the sample.

We are continuing research to obtain an upper bound
(rather than a two-sided interval) for the random match
probability.



