

Technology Transition Workshop | Alexandre Beaudoin & Brian Dalrymple

History and Evolution of Physical Developer

Treatment on Porous Surfaces

- Ninhydrin
- 1,8-diazafluoren-9-one (DFO)
- 1,2-indanedione
- Oil red O
- Magnetic powder
- Physical developer

Treatment on Wet Porous Surfaces

- Multimetal deposition
- Oil red O
- Physical developer

History

- Physical developer developed by the Atomic Weapons Research Establishment and the UK Home Office Scientific Development Branch
- Technique introduced in Manual of Fingerprint Development Techniques by Morris (editor)
- Several attempts to simplify the process over the years
- Last formula developed by Ramotowski et al. from the U.S. Secret Service

Evolution of Formula

- A lot of work has been done to simplify the process
 - Many of the formulation changes give poor results
- In those that work:
 - There is an attempt to acidify the acid pre-wash to help remove CaCO₃ (calcium carbonate)
 - There is a change of the Synperonic N to the Tween[®]
 20 to improve stability (by Ramotowski et al.)

What is Physical Developer (PD)?

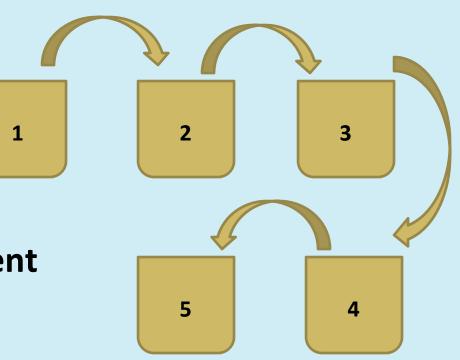
- Can detect fingerprints on wet and dry porous surfaces
- It's based on an oxidation-reduction reaction
- Could be used to develop salt traces from shoes on paper (more relevant for northern states where there is snow and, by extension, salt on the road)

Pros of PD

- Can develop very old fingerprints
- Can detect fingerprints not developed by oil red O
- The developed fingerprint is stable and stays visible for a long period

Cons of PD

- Destructive Technique
 - Time consuming
 - Expensive chemicals
 - Complexity of application
 - Monitoring of development during process
 - Acid wash pre-treatment renders the paper weak and easy to damage
 - Large quantity of glassware needed
 - Requires VERY clean glassware
 - Dirty method


What is PD?

Six steps:

- 1. Rinse
- 2. Acid pre-wash
- 3. Rinse
- 4. Physical development
- 5. Fix solution
- 6. Drying

Preparation of Solutions*

- Verification of Distilled Water
 - To make sure distilled water is not corrupted, add some crystals of silver nitrate into 25 ml of distilled water.
 - If the water stays clear, distilled water is OK
 - If white milky material forms at the bottom of the container, distilled water must be changed

* For the physical developer technique, always use plastic pliers and glassware

- Remember
 - Always put acid into water, never water into acid
 - Putting water into acid gives an exothermic reaction (heat production) that could cause an explosion
- Keep in mind:
 - Acid in water: yes sir!
 - Water in acid: stupid!

- Redox Solution combine:
 - 30 g ferric nitrate
 - 80 g ferrous ammonium sulfate
 - 20 g citric acid
 - 900 ml distilled water

- Detergent Solution combine:
 - 3 g n-dodecylamine acetate
 - 3 ml Tween[®] 20
 - 1 L distilled water
- Silver Nitrate Solution combine:
 - 10 g silver nitrate
 - 50 ml distilled water

Preparation of Solutions

- Malic Acid Solution combine:
 - 25 g malic acid
 - 1 L distilled water
- Fix Solution
 - Mix photo fixer and distilled water according to the manufacturer's instructions (usually 1 part of photo fixer for 7 parts of water).
 - 2. Add 10 ml of photo fix in the solution.

- PD Working Solution* combine:
 - 900 ml Redox Solution
 - 40 ml Detergent Solution
 - 50 ml Silver Nitrate Solution

* Should be used as soon as it is prepared!

Procedure

- Soak the document in a distilled water bath for 2 to 3 minutes.
- Remove the document from the distilled water 2. bath and drain it.
- Place the document in the Malic Acid Solution 3. (pre-wash) and keep immersed until no more bubbles form in the solution from the document.
 - This step is used to get rid of the calcium carbonate in the paper that could ruin the physical developer reaction

*Procedure (continued)**

- Remove the document from the Malic Acid Solution and drain it.
- Next, soak the document in a second distilled water bath for 2 to 3 minutes.
- Remove the document from the water bath and drain it.

* Between each tray, the plastic pliers must be soaked in distilled water

*Procedure (continued)**

- 7. Place the document in the PD Working Solution, being careful to monitor the treatment very closely. If you don't, fingerprints could be lost.
 - If you used ORO before PD, pay close attention to the sites where the ORO has stained the paper, since there is a greater chance of finding fingerprints there

* Between each tray, the plastic pliers must be soaked in distilled water

*Procedure (continued)**

- 8. When the development of the fingerprint is sufficient, remove the document from the PD Working Solution and drain it.
- Immerse the document in the Fix Solution for 2 to 3 minutes to stop the reaction.
- 10. Let the document dry in open air.

* Between each tray, the plastic pliers must be soaked in distilled water

Principle of PD

- It's a fingerprint development technique based on an oxidation-reduction reaction
- Oxidation-reduction: spontaneous reaction where there is an electron transfer from one atom to another
- Reaction where oxidation and reduction take place simultaneously
- These two reactions taken separately have no basis in reality

Ionisation

Silver nitrate →

Ag NO₃

Ferrous ammonium sulfate →

Fe $(NH_4)_2 (SO_4)_2$

Ionisation

Silver nitrate → silver ions:

Ag +

Ferrous ammonium sulfate → ferrous ions:

Fe ²⁺

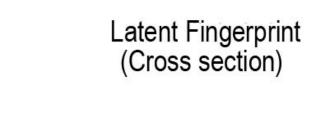
Oxidation and Reduction

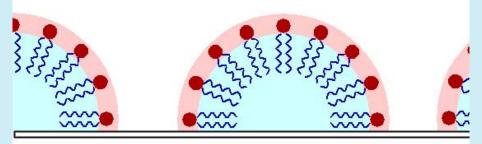
Oxidation: chemical reaction where we lose an electron

$$Fe^{2+} \rightarrow Fe^{3+}$$

Reduction: chemical reaction where we gain an electron

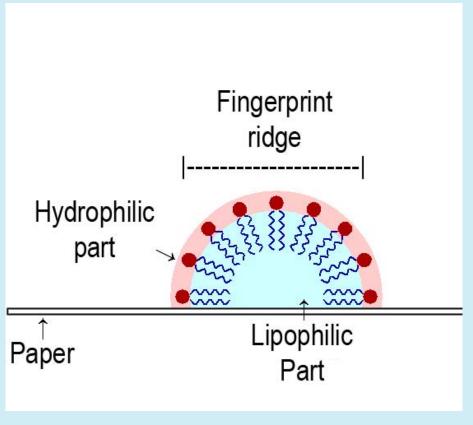
$$Ag^+ \rightarrow Ag_{(s)}$$

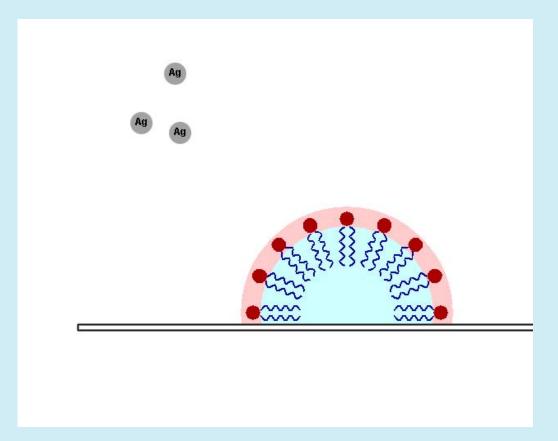

• Equation: $Fe^{2+} + Ag^+ \leftrightarrow Fe^{3+} + Ag_{(s)}$



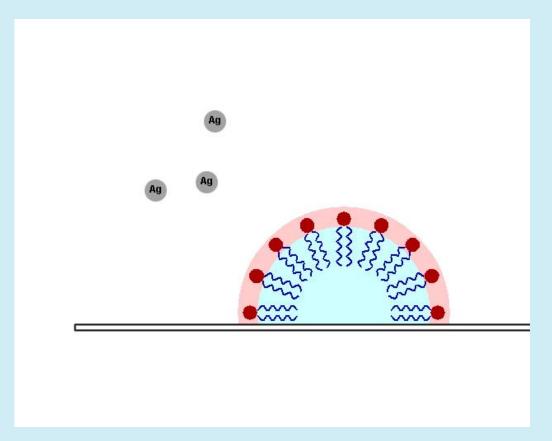
Oxidation and Reduction

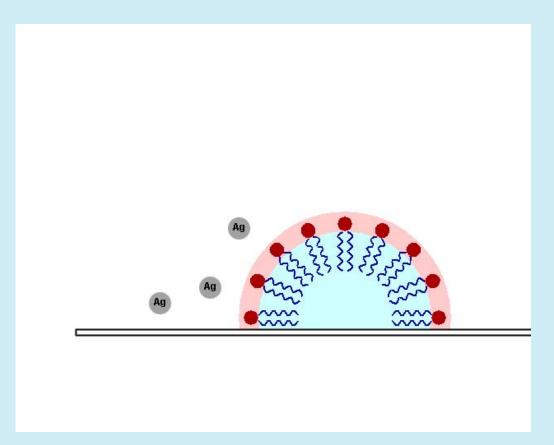
- During oxidation-reduction, the chemical compound that gives an electron is called the reductant
- The one that receives the electron is called the oxidant

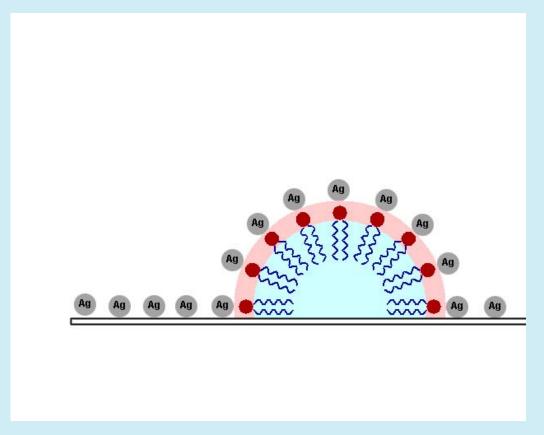


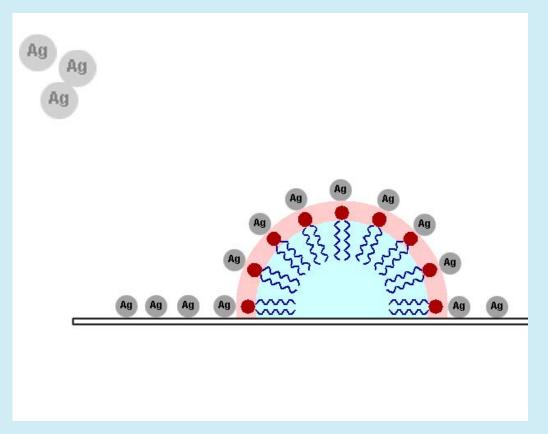


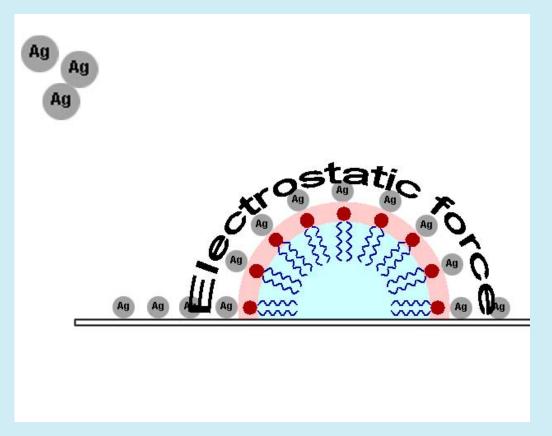
- = colloidal silver particle
- Ag = bigger silver particle

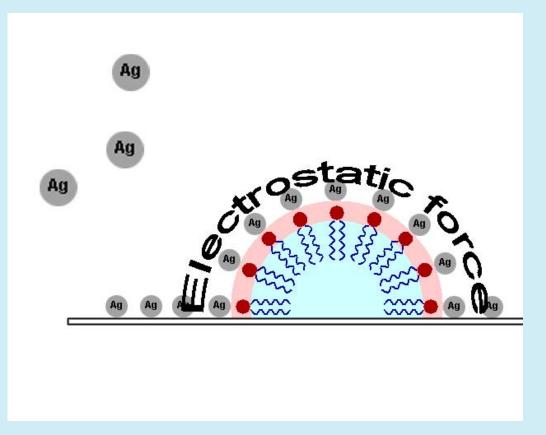


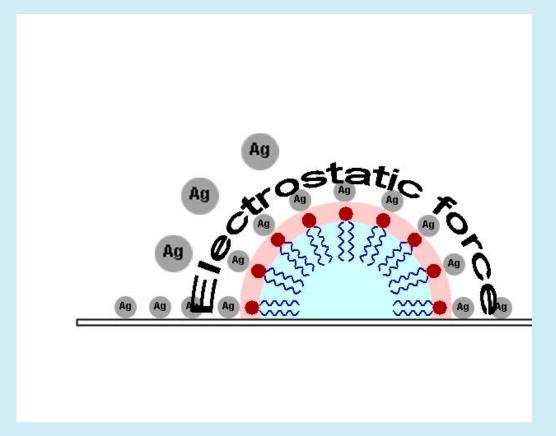


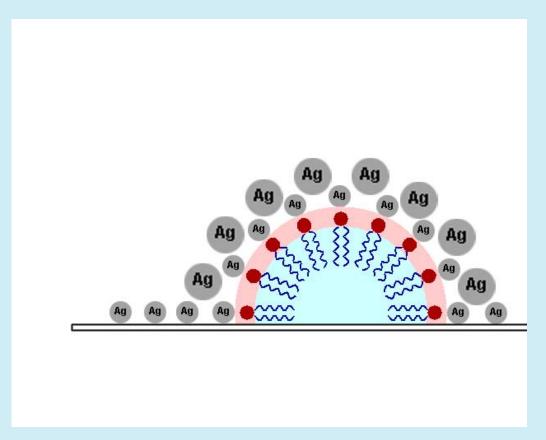












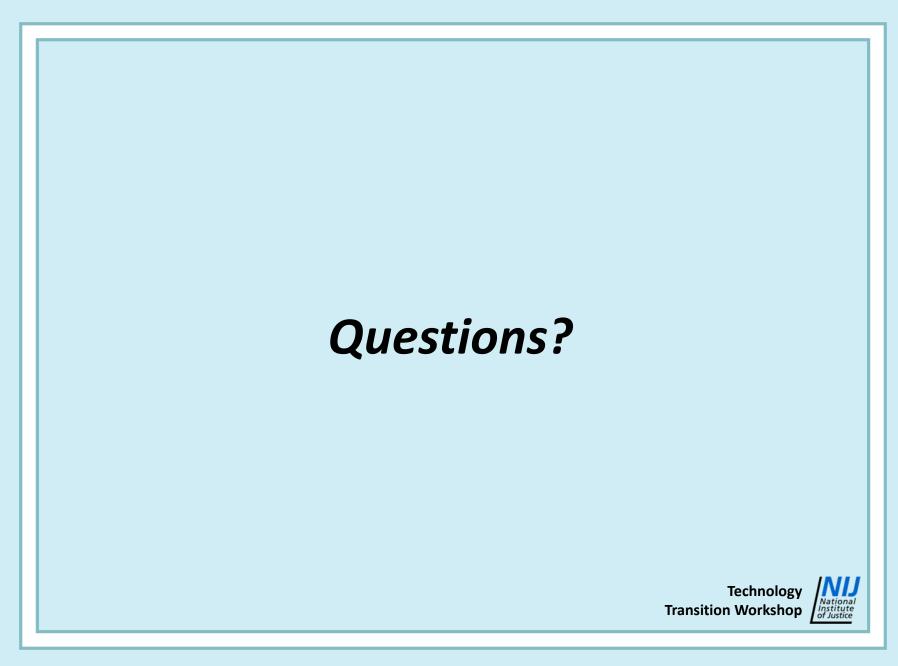
When Should I Use PD?

- PD should be used on dry or wet porous surfaces
- PD should be integrated into your sequence on dry porous surfaces after oil red O
- Dry porous surface sequence could be:
 - DFO-NIN-ORO-PD
 - IND-ORO-PD

When Should I Use PD?

- PD should be integrated into your sequence on wet porous surfaces after oil red O
- Wet porous surface sequence should be:
 - ORO-PD

Physical Developer After ORO



Conclusion

- Physical Developer is a good technique for wet porous surfaces and dry porous surfaces
- You should practice the physical developer technique in order to be able to use it in casework
- Physical developer is especially good for very old fingerprints
- Physical developer should be used as the last and final technique, since it is DESTRUCTIVE

History and Evolution of Physical Developer

Transition Workshop

Contact Information

Alexandre Beaudoin
Alexandre Beaudoin Criminalistique
465 Dalpe, Vercheres, QC JOL 2R0, Canada
514-660-6944

Alexandre.beaudoin@gmail.com

Brian Dalrymple
PO Box 296, Orillia, ON L3V 6J6, Canada
705-835-0227

info@briandalrymple.com

Note: All images are courtesy of Alexandre Beaudoin.

