

Technology Transition Workshop | Alexandre Beaudoin & Brian Dalrymple

The History and Evolution of Indanedione

History of Fingerprint Development

- Techniques dependent on
 - Surface (porous / nonporous)
 - Specific properties
- Powder the first detection technique
- Likely accidental (serendipity)

History of Fingerprint Development

- Fingerprint ingredients / properties
 - Sebaceous oil (stickiness)
 - Sodium chloride
 - Lipids
 - Amino acids

History of Fingerprint Development

- 1892 Forgeot (colleague of Bertillon) explored silver nitrate
- 1932 Hudson used silver nitrate in Lindbergh baby kidnapping
- 1940s Introduction of ninhydrin
 - Presumptive test for protein
 - Amino acids on chromatograms
- 1955 Patent granted to Oden and von Hofsten
 - Usage of ninhydrin to develop fingerprints

Silver Nitrate

- First technique for porous surfaces
 - Paper, cardboard, wood
 - Detection target sodium chloride
 - Silver chloride darkens on exposure to light
 - Easily affected by humidity
 - Salt migrates from ridge sites
 - Ridge detail quickly degraded in humid environment

Ninhydrin

- 1950 1970 Slowly emerged as reagent of choice for porous exhibits
- Unaffected by extremes of humidity
- Effective on wide range of paper and other nonporous surfaces
- In mainstream use in present day

Ninhydrin

Sequential Processing of Documents for Fingerprints

Ninhydrin Technology **Transition Workshop**

Ninhydrin

- 1972 adapted for regular use by Ontario Provincial Police
 - Promotional exam investigation
 - Summer months in Toronto (humid!)
 - Numerous papers examined by silver nitrate
 - Progressive degradation over time
 - Switched to ninhydrin in mid-examination
 - Clean sharp ridge detail unaffected by humidity

Ninhydrin

- 1980s ninhydrin not producing satisfactory results worldwide
- Israel, Australia, England, United States
- Research into ninhydrin analogs
 - 5-methoxyninhydrin
 - Benzo(f)ninhydrin
 - 5-methylthioninhdrin
 - Naphtho(f)ninhydrin

Diazafloren-9-one (DFO)

- 1990 Introduced by Pounds et al.
- Reported as 2 ½ times more sensitive than ninhydrin
- Strong color mode
- Strong luminescent mode
 - Excited by green light
 - YAG laser, argon laser, OPSC laser
 - Forensic light source (green)
 - Viewed through orange goggles

- Slow and uneven acceptance in identification community
- More expensive than ninhydrin
- Requires expensive light source
- Requires luminescence photography
- Requires more <u>time</u>

DFO / Ninhydrin

- 1990 present both reagents in use
- DFO often used as "niche" technique
- Bad batches tarnished DFO reputation
- Few comprehensive comparative studies done by police agencies
- Comprehensive reports largely ignored
- Result routine and preferred used of DFO is rare
- Sequential use of DFO and ninhydrin even less frequent

Current Lab Realities

- Operational budgets cut
- Training budgets cut
- Any existing research budgets cut or eliminated
- Exhibits for examination either holding or rising
- New techniques mean more
 - Man-hours / staff
 - Equipment / lab space
 - Photography
 - Fingerprint comparisons
 - Court
- Daubert more adversarial review

Current Lab Realities

- Identification function is event-driven
- Now being converted to dollar-driven
- Choice between
 - What we see needs to be done
 - What we can afford to do

- Ninhydrin analog
- 1997 developed
 - U.S. Secret Service Ramotowski et al.
 - University of Pennsylvania Joullie et al.
 - Israel Police Force Almog et al.
 - Australian Federal Police Lennard et al.

- Less color mode intensity than ninhydrin or DFO (author)
- Intense yellow fluorescence
- Initial recommendations for moist heat (like ninhydrin)
- Excited by green light
 - Laser 532 nm
 - Forensic light sources 505 nm, 530 nm
- Orange or red barrier filter for viewing and photography

Fluorescence more yellow than DFO

Indanedione

Fluorescence more yellow than DFO

Indanedione

Fluorescence more yellow than DFO

Indanedione

DFO Transition Workshop

Technology

Fluorescence more yellow than DFO

- Color mode weak
- Intense fluorescent mode

1,2 Indanedione – Issues

- Source quality and purity (author)
- Formula
 - Israeli
 - British
 - Australian
- Shelf life
- Post-treatment heat and/or humidity
- Addition of zinc chloride (ZnCl₂) Lennard et al.
- Pre-treatment exhibit humidity (Ramotowski)

Ninhydrin – Reaction Time and Stability

Case Report

- Several hundred paper exhibits
- Treated with ninhydrin many impressions marked
- Multiple identifications on multiple subjects
- Court six months later
- Multiple new impressions multiple new identifications

Ninhydrin – Reaction Time and Stability

- Case Report
 - Multiple paper exhibits processed in ninhydrin
 - Multiple impressions identified
 - Documents placed in storage
 - Court one year later
 - Many impressions disappeared

Ninhydrin / DFO – Reaction Efficiency

- Ninhydrin exclusively stain reagent (color)
- DFO dual mode (color and fluorescence)
- DFO fluorescence mode 2 ½ times more sensitive than ninhydrin
- Ninhydrin can develop added ridge detail after DFO
- ??

Ninhydrin / DFO – Reaction Efficiency

- Ninhydrin product (Ruhemann's purple) unstable
- Ninhydrin reaction incomplete
- DFO reaction incomplete
- Conclusion
 - DFO and ninhydrin react at different speeds and/or to different degrees with different amino acids
- Nineteen amino acids reported as potential components of finger residue

Indanedione versus DFO

- Numerous comparative studies
- At least five countries
 - Different formulae
 - Different samples
 - Different donors
 - Different climates (temperature / humidity)
- Different results!

Indanedione versus DFO

• Ramotowski - 2008

DFO INDANEDIONE

Images courtesy of R. Ramotowski, U.S. Secret Service

INDANEDIONE

Images courtesy of R. Ramotowski, U.S. Secret Service

INDANEDIONE

Images courtesy of R. Ramotowski, U.S. Secret Service

INDANEDIONE

Images courtesy of R. Ramotowski, U.S. Secret Service

Images courtesy of R. Ramotowski, U.S. Secret Service

INDANEDIONE

Images courtesy of R. Ramotowski, U.S. Secret Service

Technology Transitions

- Silver nitrate to ninhydrin
 - No increased chemistry costs
 - No increased time costs
 - Minimal required equipment
 - No increased training costs
 - Stain method to stain method
 - No change in photography
 - Only change is more fingerprints!
 - Rapid transition

Technology Transitions

- Ninhydrin to DFO
 - Increased chemistry costs
 - Increased time costs
 - Forensic light source required
 - Significant training issues
 - Stain method to fluorescence method
 - Significant difference in photography
 - Many changes, including choice of sequential processing
 - Transition slow to nonexistent

Technology Transitions

- DFO to Indanedione
 - No increased chemistry costs
 - No increased time costs (possible decrease)
 - Same equipment requirements as DFO
 - Same training requirements as DFO
 - Fluorescence to fluorescence method
 - No change in photography
 - More fingerprints*
 - Cautious but steady transition

Transition Differences

- 1990 Forensic light sources restricted to medium and larger agencies
- 2000+ Forensic lights in virtually every agency
- Forensic community much more adapted to fluorescence techniques
- Labs under greater adversarial scrutiny

Recommendations

- Sequential processing for porous exhibits
- Amino acids
 - DFO plus ninhydrin or indanedione
- Lipids
 - Oil red O
 - Physical developer

Contact Information

Alexandre Beaudoin
Alexandre Beaudoin Criminalistique
465 Dalpe, Vercheres, QC JOL 2R0, Canada
514-660-6944

Alexandre.beaudoin@gmail.com

Brian Dalrymple
PO Box 296, Orillia, ON L3V 6J6, Canada
705-835-0227

info@briandalrymple.com

Note: All images courtesy of Brian Dalrymple unless otherwise noted.

