

Technology Transition Workshop | *Paul Chamberlain*

Probability and Forensic Science

Overview

- In this presentation we are going to introduce some basic probability concepts
- We will focus only on those ideas you will need to appreciate the fingerprint probability software

- In any forensic science investigation we need to deal with uncertainty
- How likely is it that the recovered trace came from the suggested source?
 - Fibres from a coat
 - Paint on a jacket
 - Hair from an individual

- We need a way of assessing the likelihood of a specific event
- Given the use to which our assessment is being put, it is desirable that our assessment is not wholly based on intuition
- Is there a way in which we can do this?

- Science of statistics refers to two distinct but linked areas of knowledge
 - Counts, analysis of events, etc.
 - Examination of uncertainty
- We are interested in the second of these

- We can define two types of probability
 - Aleatory: deduce from observation of a system
 - Ideal
 - Epistemic: induce from observation of a system
 - Real

- Deduction
 - Conclusion from stated premises: from the general to the specific
- Induction
 - Deriving general principles from facts or instances:
 specific to the general

- Probability is a branch of mathematics and therefore mathematical language is used
- Here we are going to simplify the ideas
 - We will keep the use of mathematical nomenclature and formulae to the minimum

- "First Law of Probability"
 - Probability (Pr) can take any value between 0 and 1
 - Where 1 = certainty
 - Where 0 = impossible

- We can think of probabilities as odds
 - **1/10**
 - **1/1000**
 - **2/3**
- Which is the same as
 - 0.1
 - **0.001**
 - 0.67

- "Second law of probability"
 - The sum of the probabilities of mutually exclusive events equals 1

- Real probabilities are induced by observation
- Realist interpretation is concerned with frequencies and numbers of outcomes

- Let's think about the rolling of a die
- What is the probability of rolling a 6 with one die?
 - **1/6**
- How did we calculate this?

Number of events being considered

Number of possible events

- To calculate this probability we have made an assumption
- We have accepted the die to be fair
- This is unlikely to be the case in the real world
- We have created a simple model

- Of course any assumptions we make will affect our assessment of the probability
- If our assumptions are wrong then our outcome will be wrong

- What about rolling a 6 on each on two fair dice?
 - **1/36**
- How did we arrive at this?
- Did we make any assumptions?

- Multiplied the odds for each event
- Assumed that one die does not influence the other; the events are independent

- How about tossing a coin?
- How likely is it to toss a head with one coin?
 - 1/2
- Again we assume the coin is fair
- We have created a model

- How accurate are models?
- If the coin model is accurate, we would expect to see the distribution of outcomes predicted in the long run
- Comte de Buffon, Karl Pearson and John Kerrich
 - Close to ½ with approximately 4000, 24,000 and 10,000 throws, respectively

- In forensic science we are generally concerned with the likelihood of one specific event
- Is it possible to speak of the probability of a single event?

- Consider our answer to rolling a 6 with a single die
- There is no physical state of affairs which corresponds to a probability of 1/6 for a single event
 - It either happens or it doesn't!

- To quantify a probability for a single event it needs to be conceived of as a product of the mind
- This has been called subjective probability¹

¹O'Hagan 2004

- Subjective Probability is informed by
 - Empirical observations
 - Beliefs
- We need to be careful of the word subjective because we are not implying that the probability is unfounded

- What is the probability it will rain tomorrow?
- How might we arrive at that decision?
 - Weather today, yesterday, this week, etc.
 - Month
 - Season
 - Last year
 - Etc.

- For each of these factors we can make a statement:
 - If rained yesterday, it always rains in April
 - Etc.

- Given the use of forensic science, this has some limitations
 - How do we get consistency?
 - How do we get reproducibility?
- What if we assign numerical probability to each of these pieces of information?

- A way of doing this is to consider two competing propositions for a particular event and then assess the probability of the observations in each case
- We can then calculate a Likelihood Ratio (LR)

- In forensic science we can frame propositions like these to consider trace evidence:
 - What is the probability of the observations we have made (E) if the prosecution hypothesis (H_p) is correct and the suspect did leave the trace?
 - What is the probability of the observations we have made (E) if the defense hypothesis (H_d) is correct and the trace was left by a random other person?

 In mathematical language the Likelihood Ratio (LR) is:

$$LR = \frac{P_r(E | H_p)}{P_r(E | H_d)}$$

- Let's assume that the probability of making one particular observation if the prosecution hypothesis (H_p) is correct is 0.9
- Therefore, the probability of making the same observation if H_d is true is 0.1
- What is the LR?

- LR = 9
- A LR which is greater than 1 indicates that the observations are more likely if H_p is true than H_d

- Now let's assume that the probability of making one particular observation if the prosecution hypothesis H_p is correct is 0.5
- Therefore, the probability of making the same observation if H_d is true is 0.5
- What is the LR?

- LR = 1
 - This means the evidence is of no assistance
 - It is equally likely to make the observations in each case

- Finally, if the probability of the observations in the case of H_p is 0.2
- And H_d is 0.8
- What is the LR?

- LR = 0.25
- A LR which is less than 1 indicates that the observations are more likely if H_d is true than H_p

- The greater the LR, the greater the support for the prosecution proposition
- If the LR is 1 then the examination is of no assistance
- If the LR is less than 1 then it supports the defense proposition

- We can articulate LR as numbers, through graphs or diagrams, or by relating to a verbal scale
- Each of these approaches has benefits and issues
- In this workshop we will use a verbal scale such as this:

LR	
>106	Extremely strong
10 ⁵ - 10 ⁶	Very Strong
10 ³ - 10 ⁵	Strong
10 ² - 10 ³	Moderate
>1 - 10 ²	Limited

Technology Transition Workshop National Institute of Justice

 Let's consider a very simple example to explain these numbers

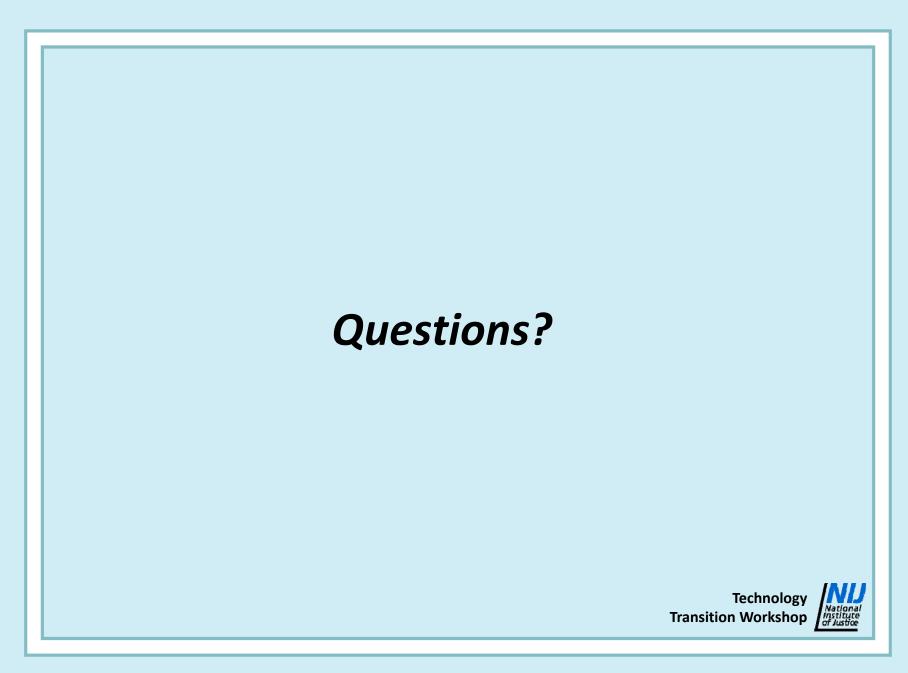
- Let's evaluate the probability of observing a correspondence if H_p is true as 0.999999999
- Therefore, the probability for H_d is 0.0000001

Referring to our verbal scale, we would call this extremely strong evidence

- Why use a LR?
 - It provides a versatile and simple measure
 - It allows evidence to be combined and evaluated
- Bayes Theorem

- Posterior odds of C = likelihood ratio of the evidence (E) x prior odds of C
- What you want to know = what you calculate x what you already know

 In the next sessions we will take these ideas and see how we can apply them to fingerprint examination



Contact Information

Sarah West
Mississippi Department of Public Safety
swest@mcl.state.ms.us

Paul Chamberlain
Forensic Science Service
Paul.Chamberlain@fss.pnn.police.uk

