

Technology Transition Workshop | *Robert O'Brien*

Validation of the MinElute® Post-PCR Cleanup System

Validation of the MinElute® Post PCR Cleanup

- This presentation covers the following topics:
 - Type of required validation
 - Types of required testing for validation
 - Number of samples needed for a successful validation
 - Factors affecting the validation
 - Satisfying audit requirements for the validation

Type of Validation

- The two types of validation defined in the quality assurance standards (QAS) for DNA laboratories documents are:
 - **Developmental validation** the acquisition of test data and determination of conditions and limitations of a new or novel DNA methodology for use on forensic and/or casework reference samples
 - Internal validation the accumulation of test data within the laboratory to demonstrate that established methods and procedures perform as expected in the laboratory **Technology**

Type of Validation

- Methodology is used to describe the analytical processes and procedures used to support a DNA typing technology
- For example:
 - Extraction methods
 - Quantification methods
 - Typing test kit
 - Platform

Type of Validation

- Based on these definitions, the MinElute® PCR Purification Kit for post-PCR cleanup is not considered a new method
 - It is a concentration and cleanup process
 - No different than Microcon[®] and Centricon[®]
- For MinElute® an internal validation will be required

Before Validation Begins

- Depending on the requirements of the laboratory and before beginning the validation, some preliminary testing must be performed
- If amplified product is retained for future testing then either the volume of amplified product cleaned up or the volume placed on the genetic analyzer must be determined
 - The fold increase expected from the process depends on which is chosen and the volume used

Before Validation Begins

- If implementing the manual MinElute® procedure the number of washes to be used must be determined by the laboratory
 - The number of washes also affects the fold increase
- Determination of volumes and number of washes to be used in the manual protocol will correlate to an expected fold increase
- This fold increase will vary somewhat based on pipetting differences between analysts

Technology Transition Workshop

Before Validation Begins

- If implementing the QIAcube® robot procedure the number of washes will be two (unless a change is made by the manufacturer)
- Changing volumes will still affect the fold increase
 - However due to more precise and consistent pipetting by the robot there should not be much variation once an expected fold increase is determined
- Determination of the expected fold increase during validation will help the laboratory define the limits of use of the MinElute® system and when it should and should not be used

- According to the new QAS DNA documents effective July 1st, 2009 the following types of testing must be conducted as part of an internal validation:
 - Known and non-probative evidence samples or mock evidence samples
 - Reproducibility and precision
 - Sensitivity and stochastic studies
 - Mixture studies
 - Contamination assessment

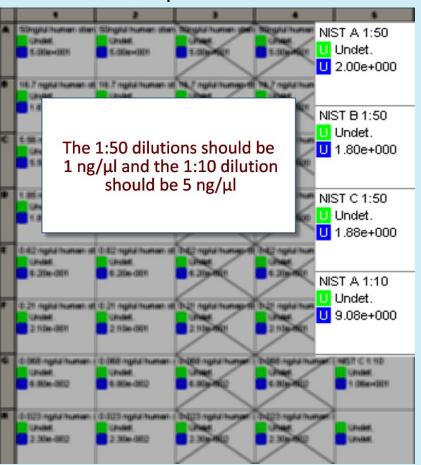
- Sensitivity and stochastic studies:
 - The first study that should be performed is the sensitivity and stochastic study
 - This study is important to set the quantitation threshold at which the laboratory will use MinElute®
 - The threshold will vary from one laboratory to the next depending on their comfort level and how low they want to go to interpret data

- Sensitivity and stochastic studies:
 - The results previously presented showed an instance where there was no data before cleanup but after cleanup there were peaks brought up to calling levels (75 RFU)
 - Some laboratories may choose to only use this cleanup system on low level peaks that are already visible but below threshold
 - The only question with setting a limit of quantitation is whether your quantitation system is accurate

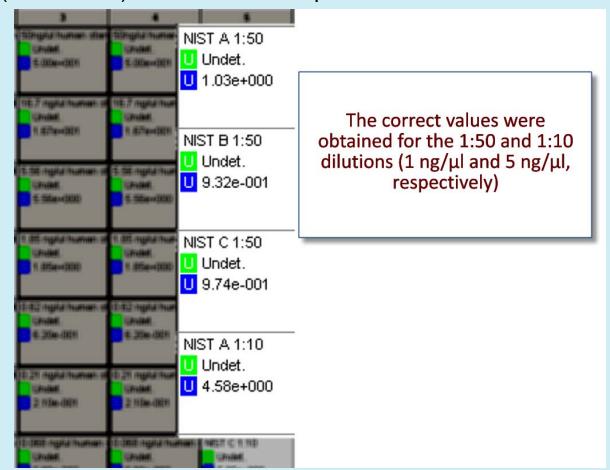
- At the NFSTC what was thought to be a problem with the sensitivity of the 3130xl was found to be a problem with the quantitation standards
- When analyzing casework there is usually a large peak height range that is accepted even though every amplification usually targets the same concentration (e.g. 1 ng/µl)

- When conducting a kit study at NFSTC in which the sensitivity of the amplification kits were being compared to each other, a lot of fluctuation was seen in peak heights from one week to the next within the same kit
- This made the study difficult and lead the staff to believe the 3130xl was having a sensitivity problem

- The 3130xl was not losing sensitivity, the peak heights were simply varying for all samples that quanted at 1 ng/µl
- After the instrument was checked and reported as being in working order, other processes were looked at
- Apart from pipetting variations the only other factor could have been the accuracy of the quantitation results



- The data showed that the standards supplied with the quantitation kit were giving a very different result when compared to standards from the National Institute of Standards and Technology (NIST)
- The next two slides show differences in quant values based on which of these two standards was used to construct the quantitation standard curve:
 - Standard A from the Applied Biosystems Quantifiler[®] kit
 - NIST Human DNA Quantitation Standard (SRM 2372)


Quantitation values using Standard A from the Applied Biosystems Quantifiler® Kit to construct the quantitation standard curve

Technology Transition Workshop

Quantitation values using the NIST Human DNA Quantitation Standard (SRM 2372) to construct the quantitation standard curve

Technology
Transition Workshop

- On the last two slides, the quanted samples were prepared from the NIST Human DNA Quantitation Standard
- The NIST SRM 2372 components (A, B and C) are prepared to have a DNA concentration of 50 ng/µl
 - A 1:50 dilution should give a quantitation value of approximately 1 ng/ μ l
 - A 1:10 dilution should give a quantitation value of approximately 5 ng/μl

- By using the Quantifiler® Standard A to generate the quantitation standard curve, the quant results obtained for these samples were almost double what they actually are
- Based on this, when you think you are amplifying a target of 1 ng/µl you may actually be amplifying 0.5 ng/µl
- This overestimation by double is not consistent

- When the Quantifiler® Standard A is used to construct the standard curve, its quantitation accuracy varies from lot number to lot number
 - Sometimes the result was double, sometimes it was less
- This inconsistency will make it difficult for laboratories to set a limit of quantitation

- Using the NIST Human DNA Quantitation Standard to make the standard curve is not cost effective, because of the price of the standard
 - When the Quantifiler® Standard A is used to generate the quantitation standard curve, dilutions of a NIST SRM component(s) can be run on each plate to help normalize the quantitation values for samples
 - Alternatively, the NIST SRM can be used to obtain an accurate value for each lot number of Quantifiler®
 Standard A, so designated quant values for each standard curve dilution point will be accurate

Technology
Transition Workshop

- Sensitivity and stochastic studies:
 - Based on the MinElute® validation study results the limit of detection of the laboratory's quantitation sytem will also have to reevaluated
 - Alleles will now be detected and can be easily distinguished from the baseline at much lower amplification concentrations when samples are subjected to MinElute®
 - MinElute[®] will increase the limit of detection
 - Alleles previously not distinguishable from baseline will now be easily recognizable

Transition Workshop

- Sensitivity and stochastic studies:
 - Stochastic threshold will also change with implementation of MinElute®
 - The stochastic effects caused by low level amplification will become more visible with MinElute® as the low level peaks are brought to callable peak heights
 - Based on their validation results, it will be up to each laboratory to decide what data they are willing to interpret and report out and what they will consider inconclusive

- Sensitivity and stochastic studies:
 - Whether a laboratory wants to interpret data that exhibits stochastic effects is up to the laboratory and their comfort level
 - With new rulings on what is considered a low copy number sample, it will be important for a laboratory's interpretation protocol to take into account the increase in stochastic effects that will now be visible when using MinElute®
 - This protocol should be backed up by validation studies

- Remainder of validation studies:
 - After the sensitivity and stochastic studies have been completed the other required validation studies can be performed
 - The interpretation guidelines that were set based on the sensitivity and stochastic studies will be followed for the remainder of the validation

- Reproducibility and precision studies:
 - By analyzing samples in triplicate, reproducibility and precision can be checked

MinElute® Post-PCR Cleanup Workshop

- Mixture study:
 - The Mixture study will show the limitations of the MinElute® cleanup process
 - MinElute® will not work well for samples that have a high major contributor and a low minor contributor
 - MinElute® PCR Purification kits for DNA cleanup will still be useful on mixtures when the entire mixture is at a low level

- Mixture study:
 - When the laboratory chooses to use MinElute® on mixtures with major and minor contributors:
 - Testing must be conducted during validation to determine the maximum RFU level the major can be at prior to cleanup
 - By determining the maximum RFU level for the major contributor prior to cleanup, the laboratory will ensure the fold increase in the resulting MinElute® data does not cause an increase in artifacts that interfere with interpretation of the minor contributor

Transition Workshop

- Contamination assessment study:
 - Because MinElute® does involve working with amplified product, the contamination assessment is very important, whether the lab elects to conduct the procedure manually or with the QIAcube®
 - Introduction of contamination can occur more readily when working with amplified product
 - Throughout the study blanks should be incorporated
 - These "MinElute®" blanks must be treated the same, and interpreted as stringently, as the analyzed samples

- Contamination assessment study QIAcube® protocol:
 - When using the QIAcube®, in at least one run the instrument should be set up with samples alternating with blanks to demonstrate that no contamination is occurring within each run
 - A cleanup run containing only blanks immediately following a QIAcube® run containing only samples should also be performed to demonstrate that no contamination is occurring from one run to the next

Technology Transition Workshop

- Contamination assessment study manual protocol:
 - MinElute® manual procedure contamination can be assessed by running blanks after every sample to demonstrate that no contamination is occurring within each run

- Known and non-probative evidence samples or mock evidence samples study:
 - After all other studies have been completed, the known and non-probative or mock samples can be run through the MinElute® cleanup process

Samples Needed for a Successful Validation

- Most labs tend to over do their validation studies
- As long as the MinElute® validation covers all aspects of how the kit will be used by the laboratory, the validation should be sufficient
 - The validation should be adequately detailed to allow the lab to answer questions that arise in the future by referencing the validation
- No fixed number of samples are required, but for an internal validation as few as ten samples per study may suffice

- One of the major factors affecting validation of the MinElute® cleanup system is comfort level with respect to the lowest RFU value the laboratory is willing to use when interpreting data
 - By the end of the sensitivity study the laboratory will know what peak heights correspond to what quantity of DNA when using MinElute®
 - The lab will take this into consideration when writing their interpretation guidelines for samples processed with MinElute®

Validation of the MinElute® Post-PCR Cleanup System

 This data would previously have been below threshold and, therefore, not suitable for conclusions
 _{Technology}

- How to handle data that previously would not have been "looked at" will also affect the MinElute® validation
 - For example, what if a low level sample that previously would have been inconclusive but now because of the MinElute® cleanup, is pulled above the calling threshold shows that the suspect's profile is present?
 - Does the laboratory still report this out as inconclusive or do they report it as an inclusion?
 - The lab needs to ensure the MinElute® validation is sufficient to determine how they will interpret and report data defined by various scenarios

Transition Workshop

- The lab will need a sufficient amount of data to demonstrate that allelic drop in is not occurring as a result of / during the MinElute® process
- When defining the parameters of their MinElute® validation, each laboratory may also want to consider the impact of potentially lowering their calling threshold based on the results of the study
 - In some jurisdictions, this change may necessitate additional Frye or Daubert admissibility hearings
 - Admissibility hearing requirements may assist in determining the number of samples per study the laboratory wants to run

- The validation results must be sufficient to support a decision to adjust the lab's calling threshold for MinElute® processed samples
 - Following cleanup, peaks will be visible that were previously at 10 RFUs or lower due to the fold increase seen with MinElute®
 - While a traditional protocol RFU threshold of 100 (set based on LOD, LOQ, and stochastic effects) may be appropriate for that data, the lab may find that review of MinElute® validation data supports setting a lower calling threshold
 - Sufficient data must be generated during the MinElute® validation to support such a decision Transition Workshop

Audit Requirements for the Validation

- After the MinElute® validation is completed the laboratory must write up a summary
 - The technical leader must approve the validation summary
- Laboratory staff will then undergo training in the use of the adopted MinElute® protocol
- Before using MinElute® on casework, each analyst must successfully complete a competency test
 - With proper documentation and authorization, staff performing the validation may use their validation work in lieu of a competency test

Transition Workshop

MinElute® Training

- MinElute® training and competency testing can be completed in a day or two regardless of whether the analysis is conducted manually or with the QIAcube® robot
- The ability to rapidly complete analyst training and competency testing is due to:
 - The simplicity of the MinElute® system
 - All techniques being consistent with current techniques used by analysts

Questions? Technology **Transition Workshop**

Contact Information

Robert O'Brien
NFSTC
7881 114th Ave North
Largo, FL 33773
1-727-549-6067 XT 108
Robert.obrien@nfstc.org

Note: All images are courtesy of Rob O'Brien.

