

Technology Transition Workshop | Brian Dalrymple

The Forensic Light Source – Comparisons

Point Source (Tungsten)

- Incandescent
- Random emission
- All directions
- All wavelengths

LIGHT AMPLIFICATION THROUGH STIMULATED EMISSION OF **RADIATION**

Argon Ion Laser

- Will detect untreated fingerprints
- Intrinsic fluorescence
- ❖ Expensive < 25K (70s dollars)</p>
- ❖ 3-Phase power 70 Amps/Phase
- Water-cooled
- Eye hazard
- Exhibit hazard
- High maintenance
- ❖ Not portable no crime scenes

Argon Ion Laser High voltage source Technology

Transition Workshop

Argon Ion Laser

All-lines - 488 + 514.5 nm

Argon Laser – Pros

- Powerful
- Beam easily directed
- All blue-green lines
- No wasted or interfering light produced

Technology Transition Workshop National

Argon Laser – Cons

- Expensive initial purchase
- Costly to run
 - 3-phase power
 - Water-cooled
- Requires expert maintenance
- Not portable
- Annoying coherent "speckle"

Laser

- Stimulated emission
- Coherent emission
- Straight line emission
- Monochromatic

Tungsten

- Incandescent emission
- Random emission
- All directions
- All visible wavelengths

Frequency-Doubled Nd YAG Laser - Pros

- Powerful
- Durable
- Portable
- ❖ Air-cooled, 110V power
- Only green light
- No wasted light produced

Frequency-Doubled Nd YAG Laser - Cons

- Pulse laser
- Low repetition rate (16 Hz)
- Annoying, distracting

LED Sources

- Relatively cool
- Cheaper to run
- Low voltage
- Immune to vibration
- Long-lasting

Alternative

L Light

Source?

YAG, OPSC Lasers & LEDs

Spectrum courtesy of Rofin

Technology Transition Workshop

Forensic

L ight

Source!

Saliva WHITE VINYL **LED 450** Laser Technology **Transition Workshop**

Semen WHITE CLOTH **LED 450** Laser Technology **Transition Workshop**

Laser

WHITE BAG

LED 505

Technology Transition Workshop

Laser

POLILIGHT® 505

Technology Transition Workshop

Laser

POLILIGHT® 505

Technology Transition Workshop

Laser

POLILIGHT® 505

Technology Transition Workshop

Laser

POLILIGHT® 505

Technology Transition Workshop

Technology Transition Workshop

Technology Transition Workshop

Technology Transition Workshop

Untreated Fingerprints POLILIGHT® 360 - Yellow Filter

Photos courtesy of J. Myatt, Ontario Provincial Police

Technology Transition Workshop

Options

LASER

FILTERED LAMP

LED

Technology Transition Workshop

Options

LASER

FILTERED LAMP

LED

Untreated Prints

Options

LASER

FILTERED LAMP

LED

Portability

Summary

- All choices offer clean uniform light
- All choices work very well with chemistry
- Lasers are the most sensitive for untreated prints
- Fibers may be revealed differently
- Differences between target and substrate
- Lamps and LEDs more versatile
- All choices work well on location and in lab
- All choices require clamp for photography
- Lasers and LED operate on battery power

Technology Transition Workshop

Inconvenient Truth

- Lasers are monochromatic
- Lamps and LEDs are broadband
- They do many of the same tasks
- They don't do exactly the same things
- Each has the ability to find things the other misses
- If we don't use both, we may missing evidence

Conclusion

- Dollar dependent
- Not dollar driven
- Event driven
- The right techniques for the right reasons
- The right equipment for the right reasons
- True economy:
 - Doing it right the first time

Contact Information

Brian Dalrymple
PO Box 296, Orillia ON L3V 6J6
Canada
Tel. 705-835-0227
info@briandalrymple.com

Note: All images are courtesy of Brian Dalrymple unless otherwise noted.

