

Virginia and the New SWGDAM Guidelines

Biology Program Manager, Virginia Department of Forensic Science

NIJ Disclaimer

 This project was supported by NIJ Award #2008-DN-BX-K073 awarded by the National Institute of Justice, Office of Justice Programs, U.S.
 Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication/program/exhibition are those of the author(s) and do not necessarily reflect those of the Department of Justice."

Virginia Procedures

- DFS will be following the published guidelines
- Complete implementation is expected in Spring 2011
- Yes we ran a lot of gels for years
- Online with CE for 1 year (3130xl)

Virginia's Lab System

- 4 Labs
- 70 staff
- Data Bank Unit
- Casework Unit
- Y STR Unit
- Mito Unit
- Familial DNA Unit ??
- Research Unit

Virginia DNA Testing

- PowerPlex 16
- 2 sec, <u>5 sec</u> and 10 sec injections
- Stats
 - Random Match Probability (single source and major/minor)
 - Likelihood ratio (2 person mixtures)
 - CPI (all other mixtures)

SWGDAM Guidelines 2010

- Section 1 Preliminary evaluation of the data
 - Analytical Threshold
 - Controls

How do you apply your analytical threshold to repaired or new instruments

If your controls have issues will you interpret the data

Limit of Detection (LOD)

- Measured the LOD from all types of samples
- 3 Different Injection Times (3sec, 5sec and 10sec)
 - No sig change per injection time
- 9 Instruments
- Statewide Average

Limit of Detection E06_RB_111510AJT fsa RB PowerPlex_16_ID3.2.0 D351358 TH01 D21511 D18551

Section 1

- Analytical Threshold
 - 2x max noise per dye

Peak Detection Algorithm: Advanced Ranges Analysis Sizing Partial Range Partial Sizes Partial
Analysis Sizing Peak Amplitude Thresholds:
Start Pt: 3000 Start Size: 80 Stop Pt: 11100 Stop Size: 600 Smoothing and Baselining Smoothing None Light Heavy Baseline Window: 51 pts Size Calling Method 2nd Order Least Squares 3rd Order Least Squares Cubic Spline Interpolation Local Southern Method Bit 73 R: 52 G: 84 Min. Peak Half Width: 2 Polynomial Degree: 3 Peak Window Size: 15 pt Stop Size Calling Method Other Stop Size Squares Ocubic Spline Interpolation Ocubic Spline Inte

Evaluating The LOD Yearly

Once a year, when a new instrument is brought on line and/or following laser replacement (or similar repair) the LOD is calculated/re-calculated

- 20 samples from multiple runs are reviewed
- LOD calculated (2x max noise) per dye
- Statewide LOD is the average of all the instruments
- New or repaired instrument compared to the statewide average

Current LOD Measurements Yellow Red Blue Green 52 **Average LOD** 73 84 75 5.6 5.2 6.1 11.5 **Standard Deviation** Jan 2011 LOD values Yellow Red Blue Green 98 106 **48 48 Central-1** 78 84 46 58 **Central-2 58** 64 66 **58 Central-3 Central-4** 74 80 58 38 76 Northern-1 60 52 60 58 82 52 28 Northern-2 28 26 20 26 Eastern-1 32 32 38 **48** Eastern-2 58 82 62 62 Western-1 60.4 70.2 49.1 47.3 Average National Institute of Justice

Establishing A Cut Off For Low Level Samples

 Validation suggested 30pg of DNA in amplification cocktail.

Testing this with real casework samples

 Have seen that Plexor is reproducible at the low end of detection

SWGDAM Guidelines 2010

Section 2

Allele Designations

< or > the respective ladder allele

Incomplete repeats TH01 9.3

Extrapolation

SWGDAM Guidelines 2010

- Section 3 Interpretation Gels were not so bad
 - Non-allele peaks
 - Spikes
 - Blobs
 - Known artifacts
 - Off scale data
 - Stochastic Threshold
 - Peak Height Ratios
 - Numbers of contributors
 - Mixture interpretation

DNA Mixture Interpretation

Institute of Justice

Off Scale

Top Origin

Lane 1: DNA MW Marker XIV Lane 2: Positive (HL-60) -200pg Lane 3: Negative Dried 1ng – 1 Joule/Cm² Lane 4: Lane 5: Dried 2ng – 1 Joule/Cm² 0.1ng/ul liquid – 1 Joule/Cm² Lane 6: Lane 7: 0.2ng/ul liquid – 1 Joule/Cm² Lane 8: Dried 1ng – 2 Joule/Cm² Lane 9: Dried 2ng – 2 Joule/Cm² Bottom Origin Lane 11: DNA MW Marker XIV (1:2) Lane 12: 0.1 ng/ul liquid – 2 Joule/Cm² Lane 13: $0.2 \text{ ng/ul liquid} - 2 \text{ Joule/Cm}^2$ Lane 14: Dried 1ng – 3 Joule/Cm² Lane 15: Dried 2ng – 3 Joule/Cm² Lane 16: 0.1 ng/ul liquid – 3 Joule/Cm² Lane 17: $0.2 \text{ ng/ul liquid} - 3 \text{ Joule/Cm}^2$ *Product gel from 0.2ml PCR tube amplification results

Stochastic Threshold

- 2 samples hetero at most loci
- Quant and made dilutions to 10pg, 30pg, 100pg
- Re-quant dilutions and amplified 10 replicates of each sample in the same TC
- Injected each sample for 2, 5 and 10 sec
- Blister plots

	D351358	TH01	D21511	D18551	Penta E	D5 58 18	D13\$317	D75820	D165539	CSFIPO	Penta D	Amel	vWA	D851179	TPOX	FGA
	16,17	6,9.3	29,30	14,17	7,17	12,13	13	10,11	11,12	11,12	10,14	X.Y	17,18	13,14	8,11	20,25
10pg	146 126		84 -	- 84		176 112	-	102 -	197 -						236 -*	
		127 -*	93 214	101 103	83 -	152 -*	124	*- 205			119 -	94 -*	127 -*			*- 114
			98 -*			87 94	90		-				103 -*		- 171	
	107 - *		*- 142				-						*- 106		*- 83	
	*- 101		*- 102			*- 110	199		-	92 -		138-81	150 -*	84 -*		
	- 92	95 150	153 134			119 -		323 -			- 96	78 242	113 -*	144 152	*- 172	99 -
	150 89		88 -*				170	*- 112	85 163		185 -		*- 147		*- 128	
	150 84	305 205	80 89	122 -*			89		186 134		91 -	*- 255	113 -	*- 105	88 88	-
		- 107	81 228			138 -	150		201 201		- 131	*- 159			146-78	88 -*
		287-82	103 -*			*- 114	-	- 105	158 -		*- 141		77 -	174 -	87 82	- 86
30pg	176 244	345 360	253 243	81 291	176 -	*- 125	311	266 160	182 280	248 -	189 86	256 -*	352 115	*- 115	245 295	256 -
	260 219	250 235	86 118	141 -*	74 -	116 144	272	292 665	517 243		*- 99	170 334	156 274	275 89	251 378	224 -*
	288 218	164 364	368 142	*- 89	157 388	210 264	598	109 281	207 144		226 456	211 572	209 329	140 174	140 193	*- 174
	221 86	214 125	365 -*		126 126	116 230	384	244 238	119 110	84 -*		203 285	383-183	101 188	116 119	*- 184
	217 -*	123 87	202 191	148 -*	98 -*	145 281	175	*- 144	87 -*		- 161	279 309	289 -*	104 131	95 -*	77 -*
	433 225	122 139	203-322		236 376	138 338	360	441 350	386.89	155 -*	186 242	500 290	243 266	295 174	163 305	221 -*
	497 125	113-131	165 -*	392 155	308.96	260 161	420	200 191	272 112	244 180	420 114	374 494	293 499	125 135	305 153	423-189
	364 423	211 171	229 214	422 236	299-73	300 252	298	299 312	*- 174	- 214	- 611	216 190	248 278	315 212	186 -	113 315
	230 193	245 222	172.90			308 272	326	141 -*	203-232	229-288	- 2/0	116-234	229 3/4	164 158	138 -	319-100
	254 454	374 102	140 329	78 106	*- 205	266 119	361	505 236	493 222	485-242	239-207	220,365	351 245	267 -*	226 472	261 -*
	370 537	708 438	314 455	186 488	716 384	350 417	852	340.95	556 268	*- 321	420 -	301 790	789 655	534 316	389 435	184 208
100pg	653 587	473 717	484-275	245 567	451 452	496 414	823	436 559	259 607	433 534	511 422	844 897	702 640	289 361	470 363	212 185
	403 788	760 684	442 805	275 553	992 174	621 839	395	605 343	1051 496	341 237	481 365	721 840	797 912	163-82	1359/263	313 481
	934 270	926777	535 697	180 486	134 485	394 447	783	747 432	216 346	301 360	135 235	590 430	638 417	316 314	357 371	290 546
	339 393 470 407	928 1152	008 480 404 383	266 240	512 202	489 738	693	493 497	468 157	218 181	403 304	663 1012	966 907	426 301	298 916	206 003
	4/0 40/	510 429	404 303	- 200 240 - 200 200	273 -*	480 342	410	4.36 1.29	100 205	210 109	200 320	430 511	799 410	160 300	200 302	2.30 204
	205 740	540 332	396 207	2/0 2/8 201 01C	<i>44</i> 5 514	245 469	827	146 000	192 200	240,001	200-200	4-00-020 704:0000	019 290 001 004	209 398	242 488 400 229	210 125
	265 250	506 472	507.656	140 400	79 -*	470 470	711	205 205	CUC 8C#	324 202 300 705	200 411	/>000 000	402,020 1020 1020	200 520	400 578	400 706
	865 000	140 400	307 636	441 504	237 178	412 327	227	600 343	195 -*	300 300 CUL COL	ാഹരാരാ നാരാസം	300 000	704 804	الالا المدر 105 000	070 /44	407 230
	000 000	168 407	646 319	*- 612	384 243	່ງທີ່ໜຶ່	644	4.32 243	615 346	113 315	298 298	803 863	/41 543	405 281	694 407	190 132
* Indicates the sister allele was observed, but was below the LOD.																

Stochastic Threshold

- Averaged the RFU values of the surviving sister peak where the other sister peak fell below the LOD or was not visible per injection time
- Added standard deviation
- Apply this data to 2,3 and 4 person mixtures

Stochastic Threshold

Injection Time	Average peak height	SD	Stochastic Threshold	N
2 seconds	121.5	42.45	160	159
5 seconds	152.85	80.67	230	205
10 seconds	202.93	128.49	330	168

Stochastic threshold values generated using the average of the peak heights where allelic drop-out was observed plus one standard deviation.

Peak Height Ratios

Locus	<u>Lower Limit</u>	<u>Locus</u>	<u>Lower Limit</u>
Penta E	33%	VWA	60%
D18S51	61%	Amelogenin	64%
D21S11	72%	Penta D	53%
TH01	53%	CSF1PO	61%
D3S1358	69%	D16S539	51%
FGA	50%	D7S820	59%
ΤΡΟΧ	59%	D13S317	55%
D8S1179	78%	D5S818	75%

NOTE: Although average peak height ratios for a single source sample at a heterozygous locus may be above 0.6 when DNA quantity is above stochastic levels (250 pg and greater), minimum heterozygote balances have been observed below 0.6 for single source samples even at sufficient quantities of input DNA (250 pg and greater,).

Numbers of Contributors

- Number of alleles
- Data below analytical threshold (LOD)
- Masking considerations

Mixture Interpretation Major/minor

- Try and limit to 2 person mixtures
- Multiple majors/minors

A major profile will be called when the peak height of the minor source of DNA is 33.0% or less than the peak height of the major source of DNA. If one or both the minor and the major contributors are heterozygous, then the 33.0% value applies to the largest of the minor contributor peaks and the smallest of the major contributor peaks.

Take the largest stutter RFU value at a locus and compare to the RFU value of the smallest minor allele (not in a stutter position)

If the stutter RFU is greater than or equal to the minor allele RFU value use all the stutter alleles in the CPI calculation

Evidence Prior to References

- All evidentiary sample electropherogram data <u>must</u> be analyzed prior to the reference samples.
- A technical review of the data analysis will be conducted by a second qualified examiner/analyst using the GeneMapper[®] ID software. The reviewer will review the evidentiary samples prior to the reference samples.
- Expert system on casework reference samples?

Putting Mixture Interpretation Into Practice

- Validation to define your system
- Test your mixture interpretation on real forensic casework
- Electronic examples for your staff

• Get buy in from your staff

Future

- PHR and Stutter at the Low End
- % Contributor
- Quant cut off 30pg
- Mixture cut off 7 alleles at 2 or more loci
- Likelihood ratio with a drop-out factor
- Expert system

